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Abstract 

Turbochargers are most widely used in automotive, 

marine and locomotive applications with diesel 

engines. To increase the engine performance 

nowadays, in aerospace applications also 

turbochargers are used. Mostly the turbocharger 

rotors are commonly supported over the fluid film 

bearings. With the operation, lubricant properties 

continuously alter leading to different load bearing 

capacities. This paper deals with the diagnostic 

approach for prediction of shaft unbalance and the 

bearing parameters using the measured frequency 

responses at the bearing locations. After validating 

the natural frequencies of the rotor finite element 

model with experimental analysis, the response 

histories of the rotor are recorded. The influence of 

the parameters such as bearing clearance, oil viscosity 

and casing stiffness on the unbalance response is 

studied. By considering three levels each for shaft 

unbalance and oil viscosity, the output data in terms 

of four statistical parameters of equivalent Hilbert 

envelopes in the frequency domain are measured. The 

data is inversely trained using Radial Basis Function 

(RBF) neural network model to predict the unbalance 

and oil viscosity indices from given output response 

characteristics. The outputs of the RBF model are 

validated thoroughly. This approach finds changes in 

the rotor bearing parameters from the measured 

responses in a dynamic manner. The results indicate 

that there is an appreciable effect of lubricant 

viscosity at two different temperatures compared to 

other parameters within the operating speed range. 

The identification methodology using the neural 

network is quite fast and reliable 

Keywords:  
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transforms, RBF Network.  

 

1. Introduction   

Today most of the diesel engines are equipped 

with turbochargers. In principle, turbocharger 

works on a closed cycle, which receives 

expanded hot burnt exhaust gases at the turbine 

wheel on it rotor so as to allow its compressor 

wheel to pressurize the atmospheric air required 

for engine combustion. Due to its relatively 

smaller sizes, often its speeds are of order 100-

300 krpm. If proper maintenance is not followed, 

it may hamper the usual operation of the entire 

engine. Sometimes the unburnt gases/fuel 

particles coming out of the engine may result in 

improper expansion on the turbine of the 

turbocharger forming pitting and corrosion 

defects in blades. Therefore, the turbocharger 

rotors have time to time unbalance and bearing 

faults due to surrounding high-temperature 

conditions. The small malfunctioning at high 

speeds of operation amplifies the changes in 

vibration signals. The schematic of the 
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turbocharger rotor is shown in the Fig. 1 with 

input and outputs from the engine. 

 
Fig. 1. Turbocharger sketch 

1-Exhaust channel of the engine, 2-Intake duck 

of engine,3-Turbocharger bearing housing, 4-

Turbine,5-Compressor,6-Journal bearings 

To predict the accurate performance and 

emission in the engine, the turbocharger 

simulations are very important. Sakellaridis et al. 

[1] described the performance of the 

turbocharger and parameters of the closed cycle 

with a variation of the load and validated the 

predictions with the experimental test. 

Kozhenkov and Deitch [2] presented an 

application of the developed procedure to model 

the dynamics of high-velocity turbocharger’s 

rotor system. Some previous works  [3–5] 

explained the stability analysis and 

manufacturing tolerance clearances on the 

dynamic characteristics of the turbochargers 

which were placed in the engines. Gjika et al. [6] 

explained the prediction of the lateral dynamic 

response of the rotor-bearing system in the 

turbocharger and validated this with the test data 

obtained from the large speed turbocharger. 

Some of the literatures [7,8] presented the 

experimental and theoretical methodologies in 

order to obtain the mechanical and frictional 

losses in the automotive turbocharger model. 

Wang et al. [9] proposed an algorithm to identify 

the bearing coefficients and residual unbalances 

of the rotor based on the unbalance response by 

using the Rayleigh method. Yao et al.  [10] 

described the modal expansion technique for 

identification and optimization of the rotor-

bearing system. This method allows identifying 

the axial unbalance and its phase, magnitude.  

Various sound and vibration based diagnostic 

approaches are available for monitoring the 

engine condition. Von Flotow [11] explained the 

basic measurement techniques along with 

damage signatures with the sensors to health 

monitoring of blade and disk. Holzenkamp et al. 

[12] explained the data-driven processing and 

signal-monitoring techniques to classify the seed 

fault imposed on the compressor ring bearing in 

the turbocharger. Pantelelis et al. [13], proposed 

a method to find the automatic fault diagnosis of 

the engine by creating a model of a turbocharger 

with finite element method. The complete faults 

of the system were predicted from neural 

networks. Machado et al. [14] proposed a 

method to predict the faults parameters in real 

systems with the use of the response 

measurements. Chandra and Sekhar [15] 

identified the speed dependent damping and 

natural frequencies of the multi degree rotor-

bearing system with wavelet-based method. 

Vencl and Rac [16] explained the most of the 

bearing failures due to the different parameters 

such as surface fatigue ,adhesive and abrasive 

and also explained wear types in the bearing 

materials. Machado and Cavalca [17] described 

the numerical model to analyze the influence of 

the wear on the dynamic response of the rotor-

bearing system in the frequency domain. 

Chatterton et al. [18] proposed a method to know 

the effect of the electrical pitting on the static 

behavior of the bearing. Barelli et al. [19] 

developed a diagnostic procedure specifically 

for the turbochargers which were installed on the 

internal combustion engines. Serrano et al. [20] 

explained  the procedure to identify the 

turbocharger rotor precession movement in 

automobile application. This technique was 

based on the infrared light diode sensors. Some 

recent studies [21,22] conducted experimental 

analysis on the turbocharger rotor bearing 

system to investigate the thermos hydrodynamic 

performance and operational characteristics of 

the turbine. Novotny et al. [23] experimentally 

verified the numerical computational model of 

the turbocharger of a diesel engine for transient 

analysis and the influence of the oil and structure 

temperature changes are also included. The 
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above studies explained the dynamic analysis of 

a turbocharger rotor bearing system under 

different conditions. The influence of 

unbalances and bearing parameters on the 

dynamics of the system is very essential. 

Although many studies are available in the 

literature, the identification of rotor bearing 

parameters in inverse modeling was found in few 

papers. 

Present work deals with some studies relating to 

condition monitoring of an ideal engine 

turbocharger rotor-bearing system. The rotor 

model is developed using finite element analysis 

and is first validated with an experimental work 

on a prototype. Unbalance, bearing oil viscosity, 

bearing clearances and casing stiffness are 

altered and the changes in the dynamic response 

are observed at different operating speeds. As a 

practical study in condition monitoring, the 

unbalance and bearing oil viscosity are predicted 

from the Fourier transform of the Hilbert 

envelopes. The statistical representative 

parameters of the signals in terms of mean, 

variance, kurtosis and skewness values are 

computed. In order to predict the condition 

measures in terms of unbalance and oil viscosity, 

an inversely trained neural network model is 

employed. After testing the model, it is used as a 

successful paradigm for giving the state of 

system unbalance and bearing viscosity by 

simply providing the frequency response at the 

bearing. A test case of short bearing 

approximation is considered for evaluation of 

nonlinear bearing forces. The paper is organized 

as follows: section 2 deals with model-based 

fault analysis. Section 3 describes the 

methodology of identification and some results 

on the test rotor. Conclusion and future scope are 

briefly given in section 4.    

2. Modeling based condition monitoring rotor 

The dynamic model of the rotor system is 

analyzed as a finite element model represented 

by the following equations of motion 

[ ] }{}]{[}{][][}]{[ FqKqGCqM =+W++ ###  (1) 

 
Here, [M], [C], [G] and [K] are respectively the 

assembled global mass, damping, gyroscopic 

and stiffness matrices of the shaft and disc 

elements [24]. {F} is a force vector containing 

unbalance, gravity and bearing forces. {q} is the 

displacement vector which is represented by 

bending in two planes as follows. 
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(4) 

Fig. 2 shows the FE model of the rotor system 

considered in the present work.  

 

 
Fig. 2. Finite element model of the rotor system. 

The model consists of eight elements with each 

element having eight degrees of freedom 

corresponding to bending in two planes resulting 

in total 36 degrees of freedom. Shear 

deformation is taken into consideration and the 

discs are assumed to be rigid and lumped at 

respective nodes in the model. Also, the bearing 

is assumed as a short journal type and the 

corresponding dynamic bearing forces are 

applied at respective bearing nodes on either 

side. The model considers oil film forces which 

are given by short bearing approximation. The 

time-varying forces together with unbalance, 

gravity and gyroscopic terms are solved with the 

global equations of motion using fourth order 
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Range-Kutta time marching integration scheme. 

The short bearing forces considered in terms of 

nodal displacements and velocities are obtained 

from a simplified Reynold’s equation [25]. 

These are given by 
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Where 

rC

e
=e ,  22 yxe +=  

(7) 

Also, m is the dynamic viscosity and W is the 

rotational speed, e represents the eccentricity and 

Cr is the radial clearance of the bearing. The 

component forces in X and Y directions are 

given as. 

ff sincos rtx FFF --=    (8) 

ff sincos try FFF +-=  (9) 

2.1 Condition Monitoring 

For the system described by Eq. (1), in order to 

identify the states due to variations in unbalance 

and bearing forces (DF), the motion of the 

system can be obtained as 
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3. Numerical studies 

The reliability of the model is first validated with 

experimental analysis. After validation of the 

model, it is employed to generate the signals at 

different unbalance conditions in the discs and 

the bearing force variations due to the oil film at 

different oil viscosities.  

In fact, the unbalance in the compressor (left) is 

due to the speed variation occurring due to the 

variations in the pressure of expanded gases on 

the turbine due to insufficient combustion. 

Similarly, a variation of the bearing forces may 

be due to inadequate maintenance of bearing 

fluid. The flowchart of the methodology is 

shown in Fig. 3.  

 

 
Fig. 3. Flowchart of the methodology. 

As it is not possible to conduct experiments by 

inducing the faults in the test rig for safety 

reasons, a simulated experimental data is derived 

from the finite element model. Based on the 

parametric studies the frequency responses are 

distinguished using statistical data. Further, this 

data is used to estimate the corresponding 

unbalance and bearing oil viscosities by means 

of the trained neural network model.  

3.1. Validation of the model (Experimental) 

The prototype used for experimental work is 

shown in the Fig. 4, where a dual disk rotor is 

placed on the two oil-film bearings. The motor is 

connected to the shaft with the help of the jaw-
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coupler. To measure the output signals two 

accelerometers (PG 109 Mo, frequency range 1 

to 10,000 Hz) are placed in two lateral directions 

on each bearing. By using digital storage 

oscilloscope (model- DPO 43034) the output 

signals are observed. 

 
Fig. 4. Rotor model used for experimental work. 

Table 1 shows the data of the rotor system which 

are used in the experimental work. 

Table 1. System data for experimental work 
Properties Value 

Left disc mass ( md1 (kg)) 1.4 

Right disc mass (md2 (kg)) 1 

Rotor diameter (dsh  (m)) 0.016 

Rotor length (m) 0.48 

Left disc diameter moment of 

inertia (Id1 (kgm2)) 

6.3×10-4 

Right disc diameter moment of 

inertia (Id2 (kgm2))  

4.5×10-4 

Left disc polar moment of inertia 

(Jd1 (kgm2))  

1.2×10-3 

 

Right disc polar moment of inertia 

(Jd2 (kgm2))  

9×10-4 

 

Rotor material density (kg/m3) 7800 

Young’s modulus (E (GPa)) 200 

Initial lubricant viscosity  (Pa-s)  265.7×10-4 

Distance between the bearings (m) 0.22 

Distance from disc1 to left bearing 0.09 

Distance from disc2 to right 

bearing 

0.09 

From experimental data by using the Hilbert 

transformation method the time envelope and 

FFT are plotted at the left bearing at a rotor speed 

of 900 rpm. Fig. 5 shows the time history and 

FFT plots obtained from the experimental data at 

the left bearing in X-direction. 

 
(a) Time history at left bearing 

 
(b) Frequency response at left bearing 

Fig. 5. Experimental results 

Fig. 6 show the frequency response at the left 

bearing node obtained from the FE model with 

the same input data. It is observed that the 

fundamental frequencies obtained from the 

experimental and FE model are close to each 
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other and this model now can be used to carry 

out the parametric studies. 

 
Fig. 6. Frequency response at left bearing from 

finite element method. 

3.2. Parametric studies 

The various signal processing methods such as 

Fast Fourier Transform (FFT), Hilbert 

Transform (HT),Wavelet Transform (WT) and 

Short Time Fourier Transform (STFT) have 

been utilize to analyze vibration signals to 

diagnose the condition of the system. Some 

limitations such as mother wavelet selection and 

level/scale which plays major role in capturing 

the inherent features in wavelet analysis.   

Recently, other time-frequency analysis methods 

named Hilbert Transform and Hilbert–Huang 

Transform (HHT) have become more and more 

popular because of their better time-frequency 

resolution. Continuous Wavelet Transform 

(CWT) requires proper selection of scale, while 

Hilbert Transform (HT) is applicable only to the 

mono-component signal. 

In the present work, the difference in the 

responses for each fault cases are amplified 

using Fast Fourier and Hilbert transforms. 

Finally based on the fault studies the type of the 

fault and fault severity are estimated using neural 

network models. 

In the field of signal theory, the Hilbert 

transform is one of the most important operators. 

Either by the direct method using the fast Fourier 

transform or Kronig-Kramers relations using an 

analytical signal theory the Hilbert transform is 

computed numerically. The Hilbert transform 

can be applied on a single frequency response 

function which has been measured using a single 

excitation level. The Hilbert transform can be 

used to create an analytic signal from a real 

signal. The ±π/2 phase-shift operator is the basic 

property of Hilbert Transform. Thus, the Hilbert 

Transform of a real signal. Together they form 

an analytic signal where the instantaneous 

amplitude is expressed as.[26] 
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The instantaneous frequency can be obtained 

from the phase: 
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where ω0=ω(t). Healthy and faulty vibration 

signal are found to be associated with unique 

predominant frequency components and unique 

instantaneous amplitudes. These frequencies and 

amplitude information can be used for the 

detection of common faults, such as a broken 

rotor bar, unbalanced rotor, bowed rotor, bearing 

defect, voltage unbalance and stator faults. Fig. 7 

shows the Campbell diagram for the rotor 

system. The critical speed is found to be at 3000, 

8000, 20000, 32000 and 38000 rpm 

approximately 

 

 
Fig. 7. Campbell diagram 

The rotor unbalance is considered by increasing 

unbalance at left disc node. The generalized 

mathematical expression for altering the 

unbalance is taken as md1e1= (a×md×e). Here, a 

is increasing unbalance factor, which is greater 
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than or equal to 1. The bearing force variations 

are due to changes in the clearance and oil film 

viscosities (m). The viscosity of the oil depends 

on the operating temperature. Here the 

temperature ranges are taken from 400 C to 900 C 

[27]. The effect of the unbalance and variation of 

the oil viscosities on the dynamics of the rotor 

system is illustrated at different speeds. Fig. 8 

shows the frequency response plots at the 

different values of the  a and   m at a rotor speed 

of 20,000 rpm. 

 

 
 

             (a) a =1.2, m=145.8e-4 Pa-s                                   (b)  a=2 ,m=145.8e-4 Pa-s 

 
 

(c) a=1.6, m=145.8 e-4  Pa-s                                  (d) a=1.6 m=910.5 e-4  Pa-s 

Fig. 8.  Frequency response at the left bearing node at rotor speed (Ω)=20000 rpm 

It is observed that when the increase of the 

unbalance the instability of the system occurs, 

the  change in the oil dynamic viscosity also 

influences the stability of the rotor system. And 

it is also noted that due to consideration of the 

unbalance and variation of the oil dynamic 

viscosity the multiple peaks in frequency 

response represents an unstable condition of the 

rotor.  

Fig. 9 show the frequency response of the system 

at different values of the bearing clearance at a 

rotor speed of 20000 rpm. Here the unbalance 

and viscosity are considered as a=1.2, 

m=265.7×10-4 Pa-s.   
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(a) C=200×10-6  m 

 

(b) C=500×10-6  m 

Fig. 9.  Frequency response at the left bearing 

node for different bearing clearances 

It is observed that as the bearing clearance 

increases the amplitude of the system is 

increasing slightly, but it is not influencing the 

dynamics of the system much. Fig. 10 show the 

frequency response of the system with different 

bearing casing stiffness (Kc) at a rotor speed of 

10000 rpm. It is observed that as the bearing 

casing stiffness increases, the sub-synchronous 

amplitude is reducing slightly. From all above 

studies, the dynamics of the rotor system is much 

influenced by the unbalance and viscosity of the 

lubricant. So in inverse modeling, these two 

parameters are only considered. 

 

(a) Kc=1×106  N/m 

 

(b) Kc=1×107  N/m 

Fig. 10.  Frequency response at the left bearing 

node for different bearing casing stiffness 

In order to identify each frequency domain 

response, four statistical parameters are 

considered. These are mean, variance, kurtosis, 

and skewness [28]. Even two FFT plots are 

identical, there is a marked difference of the four 

statistical parameters. The first central moment 

or mean is shown in Eq. (13). In practice, the 

mean is estimated by the average, expressed in 

Eq. (14). 
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The Variance or second central moment is given 

in Eq. (15) along with its estimator in Eq. (16). 

The standard deviation is shown in Eq. (17). 
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The skewness or the third central moment is 

given in Eq. (18) and its estimator is shown in 

the Eq. (19). 
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The fourth central moment, kurtosis is shown in 

Eq. (20) along with its estimator is shown in Eq. 

(21). 
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Where m is the sample size. 

 

The variation of statistical parameters with 

respect to temperature is shown in Fig. 11. As 

the temperature changes, the viscosity of the 

lubricant also changes. Further viscosity 

variation influences the dynamics of the system. 

 
 

(a) Mean                                                       (b) Variance 

 

(c) Kurtosis                                                      (d) Skewness 

Fig. 11. Variation of statistical parameters at different temperature values  
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It is observed that as the temperature increases 

the mean and variance of the response also 

increase, whereas kurtosis and skewness are 

reducing. Table 2 shows the set of these 

statistical parameters calculated by parametric 

studies. 

Table 2. Central moments data for different values of a and  m 
Sl. no a m (W)=10000 rpm (W)=20000 rpm 

  (Pa-s) 

×10-4 

Mean 

×10-15 

Variance 

×10-27 

Kurtosis 

×103 

Skewness Mean 

×10-14 

Variance 

×10-25 

Kurtosis 

×103 

Skewness 

1 1.2 910.5 5.54 3.31 0.94 24.138 2.538 1.315 1.731 37.220 

2 1.2 265.7 5.49 3.29 0.917 23.88 2.524 1.269 1.670 36.551 

3 1.2 145.8 10.14 10.61 0.443 18.52 2.385 1.04 1.386 33.326 

4 1.6 910.5 8.75 16.9 5.22 63.69 2.552 1.315 1.732 37.230 

5 1.6 265.7 8.72 17.1 5.24 63.71 2.53 1.27 1.67 36.563 

6 1.6 145.8 14.0 33.3 3.77 51.40 2.37 1.012 1.33 32.74 

7 2 910.5 13.3 57.4 6.30 72.68 2.63 1.32 1.710 36.92 

8 2 265.7 13.3 57.9 6.30 72.69 2.61 1.28 1.64 36.25 

9 2 145.8 19.7 100.6 5.69 67.649 2.73 1.31 1.11 29.763 

3.3 Inverse model development 

Fig. 12 show the input and output of the 

proposed radial basis function network model 

for the prediction of the unbalance attenuation 

and bearing oil dynamic viscosity. Radial basis 

functions are embedded into a two-layer feed-

forward neural network. Set of iputs and outputs 

characterized by such a network.  There is a layer 

which is processing in between the inputs and 

outputs is represented as hidden units. The RBF 

network function is expressed as 
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Network parameter 

{ } { } { }
jjjjjjw sÇmÇ=q  (23) 

In the present work, we used the network for 

prediction of the faulty factors. A training data 

consist of the central moment data such as Mean, 

Variance, Kurtosis, and Skewness as the inputs 

and corresponding faulty factors (α, m) are 

employed as outputs to train an RBF Network. 

Details of training can be found in the open 

literature [29]. 

 
Fig. 12. The architecture of radial basis function 

network. 

The convergence trend with nine hidden nodes 

are shown in Fig. 13.  There is no much more 

difference in the mean square error between 

inputs and outputs with increasing the hidden 

nodes. 
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Fig. 13. Trend of convergency 

The test data containing two situations of the 

available targets are shown in Table 3. The 

results predicted by the RBF and three-layer 

back propagation (BP) network are compared 

with the measured values. It is seen that 

deviation between predicted and actual values of 

α and m is less than two percent in both cases, but 

RBF has more effectiveness with limited 

parameters required during training. 

 

 

 

Table 3. Results of identification 
Sl. no Mean 

×10-14 

Variance 

×10-26 

Kurtosis 

×103 

Skewness Output parameters 

a predicted aact          mpredicted  (Pa-s) ×10-4   mact×10-4
 

    (Pa-s) 
RBF 

 

 BP  RBF 

 

  BP  

1 2.18 9.24 1.588 18.61 1.05 0.93 1.0   449   437      455 

2 2.45 6.63 1.73 24.19 1.58 1.75 1.6   640   649      637 

4. Conclusion and Futurescope 

In the present work, the dynamic modeling and 

fault identification of the rotor-bearing system of 

the turbocharger was presented. A dual-disk 

rotor was analyzed by finite element modeling 

and the faults are simulated with unbalance 

response. After validation with the experimental 

work, the central moment data (Mean, Variance, 

Kurtosis, and Skewness) were recorded for 

various fault conditions. A training data 

containing the central moments as inputs and 

corresponding fault factors as output was 

employed to train the RBF network. The results 

of the identification of two test cases were 

reported. It was found that on average 3% 

deviation in prediction using vibration data even 

with noise. Present neural network model can be 

extended for obtaining the bearing wear 

parameters along with multiple other faults. 

Further, the trained neural network model may 

be employed as a function estimator for an 

optimum design problem of the faulty system.   
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