
http://jecei.srttu.edu

Journal of Electrical and Computer Engineering Innovations

JECEI, Vol. 6, No. 1, 2018

J. Elec. Comput. Eng. Innov. 2018, Vol. 6, No. 1, pp. 33-42, DOI: 10.22061/JECEI.2018.811 33

SRTTU

A Method for Estimating the Cost of Software Using Principle
Components Analysis and Data Mining

Azin Saberi Nejad1 and Reza Tavoli2,*
1Pooyandegan Danesh Institution of Higher Education, Chalus, Iran.
2Department of Computer Engineering, Islamic Azad University of chalus, Chalus, Iran.
*Corresponding Author’s Information: r.tavoli@iauc.ac.ir

ARTICLE INFO

ABSTRACT

ARTICLE HISTORY:
Received 04 March 2018
Revised 20 July 2018
Accepted 29 July 2018

 Nowadays, data mining is one of the most significant issues. One field of
data mining is a mixture of computer science and statistics which is
considerably limited due to increase in digital data and growth of
computational power of computers. One of the domains of data mining is
the software cost estimation category. In this article, classifying
techniques of learning algorithm of machine and COCOMO model as the
most common estimation model of software costs are presented. Then,
the analysis method of principal component approach is presented. This
article presents a suitable method to improve the performance of the
software cost estimation. Moreover, the basic data set is decreased and is
turned into a new collection by using this method. Among the features,
the best are extracted. The algorithms of several classifications are
assessed by applying this method. Finally, the evidence for accuracy of
our claims in terms of increase in estimation accuracy of software costs is
presented.

KEYWORDS:
Increased accuracy

Software cost estimation

Principle components
analysis

Data mining

1. INTRODUCTION

Today, software is considered as the most expensive
element of any computer system [1]. One of the
domains of data mining is the cost estimation of
software [2]. The process of predicting the effort
required to develop a software system is named
Software cost estimation [3]. Much of the decision-
making of managers at the start of a software project
is involved in cost and time. The successful software
project is a project to achieve certain predetermined
purposes in terms of cost and time. Excessive costs for
a software maker can be harmful. Cost estimation was
the problem of systems analysts, project managers
and software engineers for decades. Identifying the
enact costs of software projects helps managers to
accurately estimate the real price of a software [1].

Software projects must begin by analyzing the
previous projects and those that are marketed as
products. Calculation of software cost is usually tricky.

Software projects were not so understandable earlier
and always themes and ideas that were in customers’
minds and the minds of managers indeed differed.
With the gradual growth in the size and importance of
applicable programs, costs of creating software began
to grow and hence the excessive increase of costs for
software planners were disastrous. In the previous
years, various methods were presented for estimating
the software project cost [1], which were called
algorithmic or non-algorithmic methods.

In the following, you can see that why accurate cost
estimation is important [4]:

 It is useful for classifying and prioritizing
development projects compared to the complete
business plan.

 It is useful for finding out what resources to
commit to a project and how well these resources are
used.

 It is useful for assessing the impact of changes
and how to support for preplanning. Managing and

Azin Saberi Nejad & Reza Tavoli

34

control the projects will be easier when resources are
better matched to real needs [4].

 Customers expect to find a close agreement
between the development costs and estimated costs
[4].

Software cost estimation has been a major
difficulty in software development. There exist several
reasons that affect the cost estimation process as
follows [4]:

 Cost estimate of software development is
difficult because the first steps are understanding and
defining the system that the cost is to be estimated.

 A cost estimate done early in the project life
cycle is generally based on less precise inputs and less
detailed design specifications.

 Software development involves many
correlated factors, which affect not well-known
development effort and productivity.

 Historical database of cost measurements are
incomplete, inaccurate or inconsistent.

 Lack of trained estimators.

 It is so difficult to understand and estimate
untouched or unseen product or process like software
which is intangible, invisible, and intractable.

To do so, it is necessary to model data to observe
the number of attempts in output by putting a related
data in new projects. Therefore, the thing that helps
create suitable model is using basic data set. One data
set that has been considered by researchers and
shows the output of different models is the data set
related to NASA 93 with 93 records and 24 features.
This data set is released as a result of free program of
space station at 6 centers in NASA which include jet
launch [5,6]. COCOMO data set 81 includes 63
records and 19 features. The NASA data set 93 has
COCOMO data set format.

The reason why we selected these data sets are
their availability. Therefore they are suitable sources
to compare with other models. We also applied the
principal component analysis (PCA) method which is
one method to extract features. We will introduce the
best collecting algorithm to improve software cost
estimation by using PCA to decrease the input data
and also to use different algorithms in classification of
data mining.

This paper is formed as follows. In Section 2,
related literature is discussed. Section 3 focuses on
software cost estimation and related works. In Section
4, the suggested approach is presented and discussed.
Section 5 focuses on experiments and results which
include implementation tools, data collection,
evaluation criteria, results and its analysis. Finally,
Section 6 concludes this work and presents the future
works.

2. RELATED LITERATURE

Estimating software development is of vital
importance. Under-estimation causes schedule and
budget overruns and the project to be cancelled. Over-
estimation causes funding to the other promising
ideas and organizational competitiveness to be shifted
in time [7]. The concept of software cost estimation
began in 1960s and many cost estimation models have
been proposed by various researchers since then [8].
It means that there is a long history of researchers
exploring software effort estimation.

Some of these researchers are Wolverton (1974),
Black and et al. (1977), Herd and et al. (1977),
Walston and Felix (1977), Freiman and Park (1979),
Boehm (1981), Jensen (1983), Park (1988), Shepperd
and Schofield (1997), Walkerden and Jeffery (1999),
Burgess and Lefley (2001), Menzies and et al. (2006),
Jorgensen and Shepperd (2007). In 2007, Jorgensen
and Shepperd reported on hundreds of research
papers dating back to the 1970s devoted to the topic,
over half of which proposed some innovation for
developing new estimation models [7]. In the 1970s
and 1980s, it was focused on parametric estimation as
done by Putnam and others. Boehm’s constructive
cost model (COCOMO) [7] is an example. COCOMO is a
parametric method; i.e., it is a model-based method
that first assumes that the target model has a
particular structure.

Then, it uses model-based methods to fill in the
details of a particular structure (may be to set some
tuning parameters) [7]. Since that work on parametric
estimation, researchers have innovated other
methods based on regression trees (Shepperd and
Schofield (1997)), case-based-reasoning (Shepperd
and Schofield (1997)), spectral clustering (Menzies
and et al. (2013)), genetic algorithms (Freiman and
park (1979), Cordero and et al. (1997)), etc. These
methods can be augmented with “meta-level”
techniques like tabu search (Corazza and et al.
(2010)), feature selection (Zhihao chen and et al.
(2005)), instance selection (Kocaguneli and et al.
(2012)), feature synthesis (Menzies and Shepperd
(2012)), active learning (Kocaguneli and et al.
(2013)), transfer learning (Kocaguneli and et al.
(2014)). Temporal learning (Lokan and Mendes
(2009), Miller (2002)), and so on [7].

3. SOFTWARE COST ESTIMATION

Software cost estimation plays a vital role in
software engineering as the success or failure of
project entirely depends on it. Cost estimation’s
deliverables like staff requirements, schedule and
effort are important chunk of information for
formation and execution of a project. They provide
inputs for project request and proposal, project
planning, control, budget, progress monitoring & staff

A Method for Estimating the Cost of Software Using Principle Components Analysis and Data Mining

J. Elec. Comput. Eng. Innov. 2018, Vol. 6, No. 1, pp. 33-42, DOI: 10.22061/JECEI.2018.811 35

allocation. Illogical and uncertain estimates are the
root causes of project failure. So, the capability of any
system is to find out correct time and cost of software
which is very crucial for the progress of that system.
The software engineering community puts enormous
effort for building models in order to comfort
estimators to provide accurate cost estimates for
software projects [9].

A. Software Cost Estimation Models

Cost estimation techniques are mainly of two kinds:
algorithmic and non-algorithmic [10,11,12]. The two
kinds are introduced in details.

A.1. Non-Algorithm Models

this model first compares the project under
consideration with the previously done projects by
the organization and analyses the information from
the most similar projects to make cost estimates.
Basically, this model makes use of past experiences
[8]. Models explained in details are as follows:

 Top-Down: The top down estimation method
also known as macro model, considers effort as a
function of size of the project.

 (1)

where a is a constant and b is the size of the project. At
first, an overall cost is estimated, the project is then
partitioned into various levels and the cost estimation
of each level of is derived from the global properties of
the software project. The total cost estimation of the
project makes it very easy to estimate costs at the
start, however, one needs to revise the initial
estimates as the project progresses, which leads to
delays if the revisions lead to varying results from the
earlier estimates. Due to the fact that very little
detailed information is available at the start, this
method is highly regarded in early cost estimation [8].

 Bottom-Up: This is the exact opposite of the
top-down approach. In this method, we first estimate
the cost for each and every small components of the
project, which is then combined to form the cost of the
overall project. It aims to consolidate the small
information available and how they interact in order
to arrive at the overall cost. COCOMO method uses
this approach for cost estimation. Although bottom-up
is a much consolidated technique, but it cannot be
applied to projects where much detail is not known at
the start of the project. Trying to apply bottom-up in
these situations can lead to bad estimations [8].

 Analogy Model: Supposing the project
development information is known, cost can be
estimated by comparing the proposed project to
previously completed similar project. In this model,
cost of the new project can be estimated by
extrapolation of the actual data from the completed

projects. Analogy method can be used for both system
and component levels. Briefly, the main steps are as
follows [4]:

 Find out the main features of the proposed
project.

 Choose the most similar completed projects
that we have their features in a historical data base.

 Find the estimate for the proposed project
from the most similar completed project.

A.2. Algorithmic Models

Algorithm models are based on one or more
mathematical formulas that are typically obtained
through statistical analysis. These mathematical
equations are based on previous research and data
and use inputs such as source code lines, a number of
functions for execution, and other cost factors. Each
algorithmic model is represented by Eq. (1): Effort is
an action to estimate the cost, usually measured by
person-month. Yi factors of cost and F is a form of the
function [8,13].

 (2)

 COCOMO Model (Constructive Cost Model):
The first version of COCOMO, namely COCOMO 81, as
a model for estimating the effort, cost, and schedule,
was first introduced by Boehm in 1981. In 1997, he
enhanced his first one and introduced COCOMO II.
This model provides more support for modern4 ISRN
Software Engineering software development
processes. In both COCOMO models, LOC is used as a
software code size and given in thousands to measure
the effort which is measured in person-month. The
basic COCOMO pattern is shown in (3). In this case, EF
is the number of people - month or hours required, C
is the constant value of an estimated value, LOC is the
number of program lines, and K is a constant which
estimated to be 1.05.

 (3)

Variants of COCOMO models include: 1) Basic
COCOMO 2) Intermediate COCOMO 3) Detailed
COCOMO [8,9,13].

4. SUGGESTED APPROACH

Principal components analysis is a commonly used
dimension reduction and data analysis technique for
computer vision, data mining, biomedical informatics,
and so on [14]. For years, the principal components
analysis method has been considered. For example by,
Pearson (1901) or Hotelling (1933); for modern
reviews, Abdi & Williams (2010) or Jolliffe (2014); for
uses of PCA in astronomy see e.g., Yip et al. (2004);
Suzuki (2006); Conselice (2006); Budav´ari et al.

Azin Saberi Nejad & Reza Tavoli

36

(2009); P^aris et al. (2011) [15]. Another definition of
the above method is in [16,17,18], which is as follows:
One of the popular multivariate data analysis
techniques is PCA. It was employed primarily for
visualization and dimension reduction.

Figure 1: The general processes.

In (4) below, X is independent variable, Y is the
dependent variable, i shows the number of members
(or samples), ̅ is the average of dependent variable
X, ̅ is the average of independent variable Y, ∑ shows
the collection of two parentheses and N-1 is the
number of samples minus 1. (N-1 instead of N for
calculating the variance of samples.)

∑ ̅ ̅

 (4)

The following figure shows the general processes.
To do and create COCOMO data set 81 to a new data
set, two software of MATLAB and rapid miner were
applied.

The MATLAB software resulted from software
rapid miner which was changed by omitting some
features due to being numerical and unsupervised of
PCA, was used. In MATLAB software, this data set was
changed by decreasing the dimensions and the related

In this part, our purpose to increase accuracy of
software cost estimations by using the decrease of
input dimensions and by principal component
analysis, is introduced.

formulae (covariance) which resulted to a new data
set. Covariance is an index to change one variable to
another.

According to this formula, the resulted amount if:
1) is positive, means that X or Y increase or decrease
together. 2) is negative, suggests that Y decreases by
increasing X or vice versa. 3) is 0, means that X and Y
are independent [19,20]. So, new data set in rapid
miner software were used to create and evaluate
models by using the explained algorithms. In rapid
miner, the processes are done like what is shown in
the Figure 1 [21].

To estimate the software cost and to create
evaluate models, several criteria are considered and
finally, the best accuracy of this method was
determined using the classification technique as
outlined in the next section.

5. EXPERIMENTS AND RESULTS

In this part, our tests done on 2 data sets by using
learning algorithm of machines and suggested

A Method for Estimating the Cost of Software Using Principle Components Analysis and Data Mining

J. Elec. Comput. Eng. Innov. 2018, Vol. 6, No. 1, pp. 33-42, DOI: 10.22061/JECEI.2018.811 37

methods in rapid miner software and the results are
presented. In this article, classification techniques of
data mining were used which will be explained later.

A. Implementation Tools

We used rapid miner in this article. Rapid miner is
based on Boston, Massachusetts, U.S. [21]. Rapid
miner builds a software platform for data science
teams that unites data prep, machine learning, and
predictive model deployment. Organizations can build
machine learning models and put them into
production faster than ever. This is done by using
rapid miner’s lightning fast visual workflow designers
and automated modeling capabilities. The
complexities of cutting edge data science is eliminated
in rapid miner by making it easy to use in the latest
machine learning algorithms and technologies like
tensor flow, hadoop, and spark [22]. Rapid miner is
based in Boston, Massachusetts, U.S. Its platform
includes rapid miner studio, rapid miner server and
rapid miner radoop. Rapid miner studio is a model
development tool, available as both free and
commercial editions; it is priced according to the
number of logical processors and the amount of data
used by a model [21]. Rapid miner provides learning
schemes, models and algorithms. It can be extended
using R and Python scripts [23]. In this article, the
classification techniques of data mining used, are
explained later.

A.1. Classification Technique

Classification is a data mining technique used to
predict group membership for data instances within a
given dataset and classifying them into different
classes by considering some constrains. The problem
of data classification aims at learning the relationship
between a set of feature variables and the desired
target one.

It is an example of supervised learning as training
data associated with class labels [24]. Different
classification techniques used in this work are as
follow:

 Decision tree: This type of classification
provides a rapid and useful solution in the case of
large datasets and a large number of variables. Two
things should be considered carefully, (a) the growth
of the tree to enable it to accurately categorize the
training dataset, and (b) the pruning stage. The
second one removes the superfluous nodes and
branches in order to improve the accuracy [25].

 K- Nearest neighborhood (K-NN): In K-
nearest neighbor (KNN) technique, the K nearest
neighbors is measured. In order to describe class of a
sample data point, K shows how many nearest
neighbors needed to be examined. KNN technique is

divided into two categories i.e., structure-based and
structureless.

 The structure-based KNN deals with the basic
structure of the data where the structure has less
mechanism associated with training data samples. In
the contrast, for the structureless KNN technique,
entire data is categorized into sample data point and
training data.

Herein, the distance calculated between sample
points and all training points and the point with
smallest distance is known as the nearest neighbor
[26-32].

 Naïve Bayes: Naive Bayes are simple
probabilistic classifiers based on the Bayes theorem.
These are highly scalable classifiers which involve a
family of algorithms based on a common principle
assuming that the value of a particular feature is
independent of the value of any other feature, given
the class variable. Despite the independency is an
unrealistic assumption, but Naive Bayes classifiers
still tend to perform very well [24].

To do so, COCOMO data set 81 in rapid miner
software was used and 3 features were omitted due to
being numerical and also being a unsupervised PCA
method.

Supervision of decreasing dimension in MATLAB
software and related formulae were used and
COCOMO data set 81 turned into a new data set.
Therefore, as it was said before, new data sets were
used to make and create models. In rapid miner
software, the preprocess of data was done after
choosing a new data. This phase includes choosing
data sources, omitting diverted points, and how to
treat the omitted data, and turning, extracting or
decreasing.

To decrease dimensions and extract the best
features, the omitted purpose was added to the new
data set in order to get the output from the new
collection. To extract the purpose which is a real
attempt, the related doer id is used and we also
consider positive for high expenses and negative for
low expenses.

In order to create a model which aims to extract
samples or hidden models, Gain-Ratio criteria and
Euclidean distance are applied.

B. Data Collection

As it was said, we used 2 data sets of NASA 93 and
COCOMO 81. Data set NASA 93 has the format of
COCOMO 81 and includes 93 records and 24 features.
COCOMO data set 81 includes 19 features and 93
records.

Also, in the two data sets, 70% of data are used for
teaching and 30% of data are used to test in rapid
miner software. Features and amounts in both data
set are shown in Tables 1 and 2.

Azin Saberi Nejad & Reza Tavoli

38

TABLE 1
FEATURES AND THE AMOUNTS OF FEATURES IN NASA 93 DATA SET

[5,6]

Attribute Attribute Value

Project name De, Erb, Gal, X, Hst, Slp, Y

Applied
classification

Avionics, Application–ground,
Avionics monitoring, Batch data
processing, Operating system, Real
data processing, Science, Simulation,
Utility.

Ground or air
system

F , G

Center of NASA 1, 2, 3, 4, 5, 6.

Development
year

1971, 1974, 1975, 1976, 1977, 1978,
1979, 1980, 1982, 1983, 1984, 1985,
1986, 1987.

Development
mode

Embedded, Organic, Semi-detached

In table 2, the amounts are XH, VH, H, N, VL which

refer to very Low, low, nominal, high, very high, extra
high.

TABLE 2
 FEATURES AND THE AMOUNTS OF FEATURES RELATED TO COCOMO

81[5-6]

Attribute Attribute Value

The ability of analysts (ACAP) VL, L, N, H, VH, XH

Programmers ability (PCAP) VL, L, N, H, VH, XH

Program experiments (AEXP) VL, L, N, H, VH, XH

Modern planning practices

(MODP)
VL, L, N, H, VH, XH

Use the software tool (TOOL) VL, L, N, H, VH, XH

Virtual machine test (VEXP) VL, L, N, H, VH, XH

Language testing (LEXP) VL, L, N, H, VH, XH

Program limitation (SCED) VL, L, N, H, VH, XH

Main memory limit (STOR) VL, L, N, H, VH, XH

Database size (DATA) VL, L, N, H, VH, XH

Time limit for CPU (TIME) VL, L, N, H, VH, XH

Rotation time (TURN) VL, L, N, H, VH, XH

Machine fluctuations (VIRT) VL, L, N, H, VH, XH

The complexity of the process

(CPLX)
VL, L, N, H, VH, XH

Software reliability required

(RELY)
VL, L, N, H, VH, XH

C. Evaluation Criteria

From the literature, the evaluation metric is
categorized to threshold, probability and ranking
ones. These metrics evaluate the performance of a
classifier with different aims. Moreover, all of these
metrics are scalar group method where the total
performance is presented by using a single score
value. Thus, it makes easier to do the comparison and
analysis, although it could mask subtle details of their
behaviors. The threshold and ranking metrics are
popular metrics used to measure the performance of
classifiers into three different applications [27].

In the first case, it is used to evaluate the
generalization ability of the trained classifier, in which
measure and summarize the quality of trained
classifier when tested with an unseen data. Herein,
accuracy or error rate is used to evaluate the
generalization ability of classifiers. Through accuracy,
the trained classifier is measured based on total
correctness which refers to the total of instances that
are correctly predicted by the trained classifier when
tested with an unseen data. In the second case, it is

used as an evaluator for model selection, in which
determine the best trained classifier that focuses on
the best future performance (optimal model) when
tested with an unseen data. In the third one, it is used
to discriminate and select the optimal solution (best
solution) among all generated solutions during the
classification training. For example, the accuracy
metric is employed to discriminate every single
solution and select the best solution that id produced
by a particular classification algorithm. Only the best
solution which is believed to be the optimal model will
be tested with an unseen data [27]. Different features
are as follows:

C.1. Accuracy Criterion

The accuracy criterion is a measure for the ratio of
correct predictions per the total number of instances
[27]. The accuracy of classification is calculated
according to the following function.

 (5)

where TP and TN are respectively the number of
correctly classified positive and negative instances. In
contrast, FP and FN are respectively the number of
misclassified negative and positive instances [27].

C.2. Recall Criterion

Recall is the measure for evaluating the fraction of
correctly classified positive patterns [27]. The
following function shows how to calculate this criteria
[28-31].

 (6)

A Method for Estimating the Cost of Software Using Principle Components Analysis and Data Mining

J. Elec. Comput. Eng. Innov. 2018, Vol. 6, No. 1, pp. 33-42, DOI: 10.22061/JECEI.2018.811 39

C.3. Precision criterion

Precision is the measure for evaluating the fraction
of the correctly predicted positive patterns from the
total predicted positive class patterns [27]. This
criteria is calculated by the following function [28-31].

 (7)

D. Results

In this part, we present the results of 2 data sets by
using learning algorithm of machine and the
suggested method of PCA and then compare these
results. The results are shown in Tables and Charts
below:

The results related to the three algorithms by using

PCA method, are shown below.

TABLE 4
THE RESULTS OF EVALUATION USING PCA

Metric

Algorithm

Decision
tree

Naïve Bayes K-NN

Accuracy 78.95% 84.21% 94.74%

Precision 68.33% 77.08% 96.88%

Recall 68.33% 71.67% 87.50%

TABLE 3
 THE RESULTS OF ASSESSMENT BY APPLYING 3 ALGORITHMS

Metric

Algorithm

Decision
tree

Naïve Bayes K-NN

Accuracy 60.71% 46.43% 53.57%

Precision 50.78% 47.16% 53.11%

Recall 50.64% 61.28% 52.82%

The results show that tree algorithm in COCOMO

NASA 93 with the accuracy of 60.71% is the best
method. But, since we used PCA in COCOMO data set
81, the authenticity algorithm with the accuracy of
94.74% was the best method.

E. Analysis of the results

As it was explained before, we analyzed our results
in a way that the pre-process of data was used. To
predict, classification techniques were used, but in our
case, we used dimension decrease method.

In fact, we decreased the dimension by using the
PCA method and turned it into a new data set.

Chart 1: The results of assessment of the 3 algorithms.

Azin Saberi Nejad & Reza Tavoli

40

Then, we created predicted models by using
learning algorithms of machines. The new data
treatments were predicted and then validated by the
models, but, we used data set COCOMO 81 due to its
being numerical and being unsupervised version of
the PCA method. Therefore, a search was done by
using learning algorithms of machines and some
samples were explored to predict new positions. We
used different algorithms and the prediction was done
based on the purpose features.

The prediction in these 3 algorithms are according
to the purpose features (real effort): Naïve Bayes
algorithm: the probability of software cost by
increasing expenses (positive) in group 10 was 0.794
and probability of software cost estimation by
decreasing expenses (negative) in group 10 was 0.206
and their authenticities were evaluated by the an
accuracy of 84.21%.

The decision tree algorithm: based on decision tree
model, the chance that these features decrease
expenses are more, or which feature was F1, which
showed the least cost (negative). The algorithm had
branches in which positive and negative were put. The
model shows that less expenses exist in branches (by
using the existing features).

Therefore accuracy of predicted model was
78.95%. The K-Nearest Neighbor: the created model
in the neighborhood (K = 1) were on all the samples
with 10 dimensions in 2 groups of positive and
negative and there accuracies were predicted to be
94.74%.

In this article, we presented the best method to

increase accuracy in software cost estimation by using
principal component analysis and learning algorithm
of machine and decreasing costs.

6. CONCLUSION AND FUTURE WORKS

In this article, classification technique was used to
estimate software cost. Therefore, principal
components analysis method to decrease input data
dimensions and classification algorithms to model and
evaluate them on COCOMO data set 81 were used to
increase accuracy.

The results of COCOMO 81 was compared with the
results of NASA 93.

The results proved that the suggested method
could have significant influence on models of decision
tree, naïve Bayes and nearest neighborhood by
decreasing dimension of input data and turning it into
data.

In this article, the most amount of accuracy is
related to the most adjacent neighborhood algorithm
with the accuracy of 94.74%.

In future, it is suggested to apply a different
learning algorithm of machines and a different
software work and also to use different methods such
as wrapper in order to improve software cost
estimations.

Chart 2: The results of evaluation of the 3 algorithms using PCA.

A Method for Estimating the Cost of Software Using Principle Components Analysis and Data Mining

J. Elec. Comput. Eng. Innov. 2018, Vol. 6, No. 1, pp. 33-42, DOI: 10.22061/JECEI.2018.811 41

REFERENCES

[1] F. Soleimanian Gharehchopogh, A. Talebi, and I. Maleki,
“Analysis of use case points models for software cost
estimation,” International journal of academic Research, Part A,
vol. 6, no. 3, pp. 118-124, 2014.

[2] H. Leung and Z. Fan, “Software cost estimation,” Handbook of
Software Engineering, Hong Kong Polytechnic University, pp.
1-14, 2002.

[3] M. Fatima, S. F. Ahmad, and M. Hasan, “Fuzzy based software
cost estimation methods: a comparative study,” IJIRST-
International Journal for Innovative Research in Science &
Technology, vol. 1, no. 7, pp. 287-290, 2014.

[4] R. Tripathi and P. K. Rai, “Comparative study of software cost
estimation techniques,” International Journal of Advanced
Research in Computer Science and Software Engineering, vol. 6,
no. 1, pp. 323-328, 2016.

[5] T. Menzies, D. Port, Z. Chen, and J. Hihn, “Validation methods
for calibrating software effort models,” presented at the 27th
International Conference on Software Engineering, Saint Louis,
USA, 2005.

[6] J. Hihn and T. Menzies, “Data mining methods and cost
estimation models: Why is it so hard to infuse new ideas?,” in
Proc. 30th IEEE/ACM International Conference on Automated
Software Engineering Workshop (ASEW), pp. 5-9, Lincoln,
USA, 2015.

[7] T. Menzies, Y. Yang, G. Mathew, B. Boehm, and J. Hihn,
“Negative results for software effort estimation,” Empiriccal
Software Engineering, vol. 22, pp. 1-22, 2016.

[8] S. Gupta, S. Tiwari, H. Singh, A. Shukla, and H. Raghuvanshi, “A
comparison between various software cost estimation
models," International Journal of Emerging Trends in Science
and Technology, vol. 3, no. 11 , pp. 4771-4776, 2016.

[9] T. Kaur and J. Singh, “A hybrid model for the enhancement in
software effort estimation,” International Journal of Scientific &
Engineering Research, vol. 6, no .7, pp. 619-624, 2015.

[10] S. Sharma, A. Kaushik, and A. Tomar, “Software cost estimation
using hybrid algorithm,” International Journal of Engineering
Trends and Technology (IJETT), vol. 37, no. 2, pp. 62-71, 2016.

[11] A. khatibi Bardsiri and S. M. Hashemi, “Software effort
estimation: a survey of well-known approaches,” International
Journal of Computer Science Engineering (IJCSE), vol. 3, no. 1,
pp. 46-50, 2014.

[12] G. Mathew, T. Menzies, and J. Hihn, “Impacts of bad ESP (early
size predication) on software effort estimation,” arxiv preprint
arxiv: 1612.03240, pp.1-17, February. 2018.

[13] H. Najadat, I. Alsmadi, and Y. Shboul, “Predicting software
projects cost estimation based on mining historical data,”
International Scholarly Research Network, ISRN Software
Engineering, vol. 2012, January 2012.

[14] I. M. Baytas, K. Lin, F. Wang, A. K. Jain, and J. Zhou, “Stochastic
convex sparse principal component analysis,” EURASIP Journal
on Bioinformatics and Systems Biology, vol. 15, no. 1, pp. 2-11,
2016.

[15] T. Ensor, J. Cami, N. H. Bhatt, and A. Soddu, “A principal
component analysis of the diffuse interstellar bands,” The
Astrophysical Journal, vol. 836, no. 2, pp. 1-31, 2017.

[16] T. M. V. Suryanarayana and P. B. Mistry, Principal Component
Regression for Crop Yield Estimation, Springer, 2016.

[17] R. Tavoli, E. Kozegar, M. Shojafar, H. Soleimani, and Z.
Pooranian, “Weighted PCA for improving document image
retrieval system based on keyword spotting accuracy,” in Proc.
36th International Conference on Telecommunications and
Signal Processing (TSP), Rome, Italy, pp. 773-777, 2013.

[18] R. Tavoli and F. Mahmoudi, “PCA-based relevance feedback in
document image retrieval,” arXiv preprint arXiv: 1209.2274,
2012.

[19] M. Ghazanfari, S. Alizadeh, and B. Teimourpour, Data Mining &
Knowledge Discovery, Third edition, Iran University of science
and Technology, Tehran, 2008.

[20] J. Fan, Y. Liao, and H. Lin, “An overview on the estimation of
large covariance and precision matrices,” The Econometrics
Journal, vol. 19, no. 1, pp. 1-46, 2015.

[21] C. J. Idoine, E. Brethenoux, J. Hare, P. Krensky, N. Shen, S.
Sicular, and S. Vashisth, (2018, February 22). Gartner magic
quadrant for data science and machine learning platforms.
Available: Http://www.rapid miner.com/ /resource/Gartner-
magic-quadrant-data-science-platforms. Html.

[22] Boston, Mass, (2018, February 26). Rapid miner named a
leader in the 2018 Gartner magic quadrant for data science
and machine-learning platforms. Available: Http://
www.rapidminer.com/news-posts/rapidminer-named-leader-
2018-gartner-magic-quadrant-data-science-machine-learning-
platforms.html.

[23] D. Morris. (2013). Rapid miner – a potential game changer.
Available:Http://www.en.wikipedia.org/wiki/rapidminer.htm
l.

[24] K. Deshmukh, S. Raut, and J. Bhargaw, “An overview on
implementation using hybrid naïve Bayes algorithm for text
categorization,” International Journal on Future Revolution in
Computer Science & Communication Engineering, vol. 4, no. 3,
pp. 142-146, 2018.

[25] D. M. Farid, L. Zhang, C. M. Rahman, M. A. Hossain, and R.
Strachan, “Hybrid decision tree and naïve Bayes classifiers for
multi-class classification tasks,” Expert System with
Applications, vol. 4, no. 4, pp. 1937-1946, 2014.

[26] A. A. Soofi and A. Awan, “Classification techniques in machine
learning: applications and issues,” Journal of Basic & Applied
Sciences, vol. 13, pp. 459-465, 2017.

[27] M. Hossin and M. N. Sulaiman, “A review on evaluation metrics
for data classification evaluation,” International Journal of Data
Mining Knowledge Management Process (IJDKP), vol. 5, no. 2,
pp. 1-11, 2015.

[28] M. Keyvanpour and R. Tavoli, “Document image retrieval:
Algorithms, analysis and promising directions,” International
Journal of Software Engineering and Its Applications, vol. 7, no.
1, pp. 93-106, 2013.

[29] R. Tavoli, “Classification and evaluation of document image
retrieval system," Wseas Transactions on Computers, vol. 11,
no. 10, pp. 329-338, 2012.

[30] M. Keyvanpour, R. Tavoli, and S. Mozafari, “Document image
retrieval based on keyword spotting using relevance
feedback,” International Journal of Engineering, IJE
Transactions A: Basics, vol. 27, no. 1, pp. 7-14, 2014.

[31] M. Keyvanpour and R. Tavoli, “Feature weighting for
improving document image retrieval system performance,”
arXiv preprint arXiv: 1206.1291, 2012.

[32] M. Hasanluo, F. Soleimanian Gharehchopogh, "Software cost
estimation by a new hybrid model of particle swarm
optimization and k – nearest neighbor algorithms," Journal of
Electrical and Computer Engineering Innovations (JECEI), vol. 4,
no. 1, pp. 49-55, 2016.

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22T.%22&searchWithin=%22Last%20Name%22:%22Menzies%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22T.%22&searchWithin=%22Last%20Name%22:%22Menzies%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:%22Zhihao%20Chen%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22J.%22&searchWithin=%22Last%20Name%22:%22Hihn%22&newsearch=true
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6597267
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6597267
http://www.rapid/
http://www.rapid/

Azin Saberi Nejad & Reza Tavoli

42

BIOGRAPHIES

Azin Saberi Nejad received the Associate
degree in 2013, the B.Sc. degree in 2015,
and the M.Sc. degree in 2017, all in
Software Computer Engineering from
Pooyandegan Danesh Institution of
Higher Education, Chalus, Iran. Her
research interests is data mining.

Reza Tavoli is an Assistant Professor of
department of Computer Engineering,
Islamic Azad University of chalus, Chalus,
Iran. He received his B.Sc. (2007) in
Software Engineering from Iran University
of Science & Technology, Behshahr, Iran.
He received his M.Sc. (2009) in Software
Engineering from Islamic Azad University,
Science & Research Branch, Tehran, Iran.
In addition, he received his Ph.D. (2018) of
Software Engineering from Islamic Azad

University, Qazvin Branch, Qazvin, Iran. His research interests
Include document image retrieval and data mining.

How to cite this paper:
A. Saberi Nejad and R. Tavoli “A method for estimating the cost of
software using principle components analysis and data mining,”
Journal of Electrical and Computer Engineering Innovations, vol. 6,
no. 1, pp. 33-42, 2018.
DOI: 10.22061/JECEI.2018.811
URL: http://jecei.sru.ac.ir/article_811.html

