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Article info:  Abstract 

In this study, the momentum and energy equations of laminar flow of a non-
Newtonian fluid are solved in an axisymmetric porous channel using the least 
square and Galerkin methods. The bottom plate is heated by an external hot 
gas, and a coolant fluid is injected into the channel from the upper plate. The 
arising nonlinear coupled partial differential equations are reduced to a set of 
coupled nonlinear ordinary differential equations using stream function. 
These equations can be solved using the different numerical method. The 
numerical solution is conducted using fourth order Rung-Kutta method. With 
comparing the results obtained from the analytical and numerical methods, a 
good adaptation can be seen between them. It can also be observed that the 
results of the Galerkin method have further conformity with the numerical 
results and the Galerkin method is simpler than the least square method and 
requires fewer computations. The effects of Reynolds number, Prandtl 
number and power law index of non-Newtonian fluid is examined on flow 
field and heat transfer. The results show that Nusselt number increases by 
increasing Reynolds number, Prandtl number, and power law index. 
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Nomenclature 
A,B Symmetric kinetic matrices  ur , uz Velocity components in  r and z direction 
cp Specific heat at constant pressure (Jkg-1K-1) V Velocity of cooling injection fluid 
Cn Wall temperature coefficient xk General coordinates 
F Velocity function Greek symbols 
k  Coefficient of thermal conductivity (Wm-1K-1) δam/δxn Acceleration gradient 

N Power law index in the temperature distribution 
function δum/δxn Velocity gradient 

Nu Nusselt number η Dimensionless coordinate component in 
the z direction 

P Pressure (Pa) ρ Density (kgm-3) 
Pr Prandtl number τij The components of the stress tensor 
qn(η) Temperature function φ Dissipation function 

Re Reynolds number k1 
Non-Newtonian fluid viscosity 
coefficients 

T Temperature (K) ψ Stream function (m2s-1) 

mailto:mahdimollamahdi@gmail.com


JCARME                                                   G. A. Sheikhzadeh, et al.                                        Vol. 7, No. 2 
 

 162 
 

1. Introduction  

 
The non-Newtonian fluids have a lot of 
applications in industrial processes and 
engineering. The non-Newtonian fluids have a 
lot of applications in industrial processes and 
engineering. Extraction of petroleum and 
production of papers, glasses, crystals, plastic 
sheets and biological applications, paints 
production, asphalts, and gels have their usual 
industrial applications. In recent years, 
considerable attention is devoted to the use of 
these fluids in various engineering issues such as 
their heat transfer problem in the process of 
cooling, lubricating, and hot rolling. The 
problem of cooling gas turbine blades to protect 
them against high temperatures and thus 
increasing the performance of gas turbines has 
been studied by researchers in the past years [1-
3]. Following the works of the past researchers, 
Debruge and Han [4] investigated the injection 
problem of coolant fluid from the surrounding 
environment with specified characteristics input 
by power series method and plotted the velocity, 
temperature and Nusselt profiles for various 
parameters. Their results show that the power 
law index, Prandtl number, and the Nusselt 
number increase through augmentation. The 
cooling method which they intended, increases 
energy consumption and reduces efficiency in 
the turbine. By applying the mechanism in the 
turbine whereby the drag force is decreased, it is 
possible to reduce energy consumption and 
increase the efficiency. The use of certain types 
of non-Newtonian fluids because of less drag 
force for cooling gas turbine blades is 
recommended by Kurtcebe and Erim [5]. They 
investigated the non-Newtonian viscoelastic 
fluid flow in an axisymmetric channel, 
numerically. Their results indicate that by 
increasing the viscosity of the non-Newtonian 
fluid, the friction coefficient reduces and the 
Nusselt number increases. Esmaeilpour et al. [6] 
examined Homotopy analysis method for the 
heat transfer of a non-Newtonian fluid flow in an 
axisymmetric channel with a porous wall. Their 
results represent that the calculated temperatures 
distribution in the channel using the analytical 
and Homotopy method are analogous. Hosseini 
et al. [7] investigated the same issue by Optimal 

Homotopy Asymptotic Method (OHAM). They 
showed that the Nusselt number increases with 
an increase in the Reynolds number, Prandtl 
number and power law index. Ashorynejad et al. 
[8] studied the same problem using 
Parameterized Perturbation Method (PPM) and 
evaluated the effects of the Reynolds number, 
Prandtl number and power law index on the 
Nusselt number. Their results also indicate a 
direct relationship between the Nusselt number 
and these parameters. 
Although in the recent years, analytical methods 
were used successfully in various scientific 
fields [9–15], the exact or approximate analytical 
solutions have been regarded due to their better 
physical understanding the effects of various 
physical parameters. When the analytical 
solution of the entire problem is impossible or 
very difficult, analytical-approximate methods 
such as the weighted residuals methods are used. 
The most popular of these methods is the least 
square and Galerkin method. Initial works 
performed by these methods can be noted in 
numerous cases. Stern and Rasmussen [16] 
solved a third order linear differential equation 
using collocation method. Vaferi et al. [17] 
investigated the eventuality of using the 
orthogonal collocation method to solve 
diffusivity equations in the radial transient flow 
system. Hendi and Albugami [18] solved a 
Fredholm–Volterra integral equation using 
collocation and Galerkin methods. Recently the 
least square method was used by Aziz and 
Bouaziz [19] to prognosticate the performance 
of the longitudinal fins. They found that the least 
square method is simpler than other analytical 
methods. Hatami et al. [20] used the least square 
and numerical methods to analyze the flow and 
heat transfer of nanofluids between contracting 
rotating disks. They investigated the effects of 
the nanoparticle volume fraction, rotational 
Reynolds number, injection Reynolds number, 
and expansion ratio on flow and heat transfer. 
Their results indicate that as the parameter 
related to the permeability of the wall increases 
temperature profile increases and the point of 
maximum radial velocity shifts towards the 
middle of two disks. Hatami et al. [21] simulated 
heat transfer and flow analysis for a non-
Newtonian third grade nanofluid flow in the 
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porous medium of a hollow vessel in the 
presence of a magnetic field. They demonstrated 
that by increasing the MHD parameter, velocity 
profiles decrease due to magnetic field effect. 
Hatami et al. [22] studied two-phase Nanofluid 
condensation and heat transfer analysis over a 
vertical plate under gravity and between two 
parallel plates under magnetic force using Least 
Square Method and Rung-Kutta numerical 
method. They illustrated that TiO2-water and 
Ag-water nanofluid have maximum boundary 
layer thicknesses and Nusselt number, 
respectively. Mosayebidorcheh et al. [23] 
investigated nano-bioconvection flow 
containing both nanoparticles and Gyrotactic 
microorganisms in a horizontal channel using 
the modified least square method. Their results 
represent that Thermophoresis number has little 
effect on temperature distribution.   
By a precise review, it can be found out that a lot 
of advertency is dedicated to the use of 
analytical-approximate methods to solve 
problems in recent years. In these solutions, the 
equations of flow and heat transfer are turned to 
the nonlinear ordinary differential equations 
using similarity transformation. Then, the 
analytical-approximate methods are used to 
solve them. Simplicity, lack of truncation, and 
round-off errors are the advantages of these 
methods over the numerical methods. 
Nowadays, several analytical-approximate 
methods are being offered where each of these 
methods has advantages and disadvantages. 
The purpose of this study is to investigate the 
laminar flow of non-Newtonian fluid in an 
axisymmetric channel with permeable walls 
using least square and Galerkin methods. The 
conformity of the results of the least square and 
Galerkin analytical-approximate methods with 
Rung-Kutta numerical method is checked, and 
the effect the Reynolds number, Prandtl number, 
power law index, and non-Newtonian fluid 
characteristic parameter on the Nusselt number 
are considered. 
 
 

 

 

 

2. The governing equations and boundary 

conditions 

 
In this problem, the flow and heat transfer of a 
non-Newtonian viscoelastic fluid is studied in an 
axisymmetric channel with a permeable wall as 
a model for cooling gas turbines. Fig. 1 shows an 
example of how the turbine blades are chilled. 
 

 
Fig. 1. Schematic illustration of cooling actual turbine 
blade by coolant fluid. 

 
In order to facilitate the calculation, Fig. 2 shows 
a schematic of the problem. The r-axis is 
horizontal, and the z-axis is vertical in the 
channel. L is the distance between the two-plate 
of the channel. The porous plate of the channel 
is at z = + L and the plate in contact with the 
external hot gases flow is at z = 0. 
 

 
Fig. 2. Schematic view of the geometry of the 
problem. 

 
The equations of a laminar and steady flow of a 
non-Newtonian incompressible fluid with 
constant density in cylindrical coordinates are 
written in Eqs. (1-3) [4]. The non-Newtonian 
fluid which is evaluated in this study is from the 
elastic and non-elastic viscous fluids extracted 
by Rivlin model [24]. The features of this model 
are described in reference [4]. 
 
𝜕(𝑟𝑢𝑟)

𝜕𝑟
+
𝜕(𝑟𝑢𝑧)

𝜕𝑧
= 0 

    (1) 
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  
    

  (3) 

 
In the above equations, ur and uz are the velocity 
components in the r and z directions, V is the 
velocity of the fluid injected into the channel, ρ 
and P are the density and pressure. Also, τrr, τrz, 
τzz, and τzr are the stress-tensor components of 
the non-Newtonian fluid. The boundary 
conditions of the problem are assumed in Eqs. 
(4, 5). 
 

0, 0r zu u   at z=0 (4) 

0,r zu u V    at z=+L (5) 

 
The model which is considered for the non-
Newtonian fluid assumes the material 
homogeneous and isotropic and this model 
considers the stress components dependent on 
the displacement, velocity and acceleration 
variations. The stress components (τij) at a point 
xk (k =1, 2, 3) and time t is defined as 
polynomials in the velocity gradient ((

m nu x 

), (m, n=1, 2, 3)) and the acceleration gradients 
(( m na x  ), (m,n=1, 2, 3)) in the Eq. (6) [4]. 
  

2
0 1 2 3ij I A A B    

  (6) 
 
I is the unit matrices. 

1 ,
2  and 

3  are the 
coefficient of ordinary viscosity, the coefficient 
of visco-elasticity, and coefficient of cross-
viscosity respectively. Generally, 1 , 2  and 3  
are functions of temperature and materials. In 
Eq. (6), these parameters are constant. This 
assumption is correct for many fluids such as 
polyacrylamide and polyisobutylene [25]. A and 
B are symmetric kinematic matrixes defined by 
Eq. (7) [4]. 

ji

j i

uuA
x x


 

 
 

2ji m m

j i i j

aa u uB
x x x x

  
  

   
 

  (7) 

 
In Eq. (6), the components of (k =1, 2, 3) are 
related to the material constant properties. In this 
case, the stress components are considered in 
Eqs. (8-11) [4]. 
 

2
1 2 3rr rr rr rrA A B      (8) 

2
1 2 3zz zz zz zzA A B      (9) 

2
1 2 3A A B

       (10) 
2

1 2 3rz rz rz rzA A B             (11) 
 
Because the flow is axisymmetric, a stream 
function that satisfies the continuity equation is 
defined. 
 

 2Vr f     (12) 

 
where η=Z/L. The velocity components are 
calculated by Eqs. (13, 14). 

 r
Vru f
L


 

  (13) 

 2zu V f  
    (14) 

 

By substituting the Eqs. (12 - 14) in Eqs. (1 - 3), 
Eqs. (15, 16) are obtained. 

   

2
2 1

2

2 232
2 2

2

2 2 iv

L Pf f f f
V r r V L

f f f f f f
L L

 

 


      




     

 (15)  

2
1

2

2
32

2 2

2

4 2

2 14 4

11

L Pf f f
V z V L

rf f f f
L L L

rf f f f f f
L

 

 


    



  
     

 

 
      

 

  
(16) 

In order to eliminate the pressure term, the Eqs. 
(15, 16) are derived with respect to z and r, 
respectively; subtracting the resulting equations 
supplies Eq. (17). 
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 

 

 

2
2

3
2

2

4 2

4 2 2

iv

iv

iv v

ff f LVL

f f f f L

f f f f f f

 



     
 

      
 

   

  (17) 

 
By defining the parameters 2

1 2k L  and 
2

2 3k L  as a non-Newtonian fluid 
characteristics and by considering  

2 0k   and 
the definition Re VL  , Eq. (18) is obtained 
with identified boundary conditions in Eq. (19). 
 

 
12Re Re

4 2 0

iv

iv

f f f k

f f f f

 

   
  (18) 

(0) 0, (0) 0, (1) 1, (1) 0f f f f       (19) 
 
The energy equation for this problem can be 
expressed as Eqs. (20, 21). 
 

2
p r z

T Tc u u k T
r z

 
  

    
     

(20) 

r r
rr

z r z
zz rz

u u
r r

u u u
z z r

  

 


  



   
  

   

  (21) 

 
where ur and uz are the velocity components in 
the r and z directions, respectively, and V is the 
injection velocity. P, ρ, T, cp and k   are the 
pressure, density, temperature, specific heat, and 
heat conduction coefficient of fluid, 
respectively. φ is the dissipation function which 
is the difference between Newtonian fluid and 
non-Newtonian fluid energy equation. The 
temperature distribution on the blade plate (z=0) 
is considered as Eq. (22). 

  (22) 0
0

n

w n
n

rT T C
L





 
   

 


  
 
In the distance η away from the blade surface, 
the fluid temperature can be expressed as Eq. 
(23). 
 

 
In Eq. (23), T0 is the temperature of the cooling 
input fluid (z=L). By defining  Pr pk c   

and refraining from the effects of the dissipation 
function [4], the temperature distribution 
equation with specified boundary conditions is 
considered as Eqs. (24, 25). 
 

 
3. Weighted residual methods (WRMS) 

 

Weighted residual methods (WRMs) are some of 
the approximation techniques for solving 
differential equations. These methods are 
general and extremely powerful methods for 
obtaining approximate solutions of ordinary 
differential equations (ODEs) or partial 
differential equations (PDEs). Consider the 
following (partial) differential equation: 
 
 

    D u y p y
  

(26) 

1

n

i i
i

u u c


  
 

(27) 

 
where D is a differential (partial) operator that is 
defined as a process when applied to the scalar 
function u produces a function p(y). 
Assume that u is approximated by a function u , 
which is a linear combination of basic functions 
chosen from a linearly autonomous set. That is, 
 

By substituting Eq. (27) into Eq. (26), the result 
of the operations usually isn't p(y). Hence an 
error or residual exists: 
 

       0R y D u y p y  
  

(28) 
 

(23)  0
0

n

n n
n

rT T C q
L






 
   

 


 

 (24) 
 

 

Pr Re 2 0

0,2,3,4,...
n n nq f n q f q

n

    


  

(25)    0 1, 1 0n nq q 
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Some techniques can be used to properly obtain 
an approximate function to make the residual as 
“small” as possible. In this study, the residual is 
forced to zero in an average sense by setting 
weighted integrals of residuals to zero. For 
example, it is imposed: 
 

    0 , 1,2,3,..,iy
R y W y dy i n    (29) 

 
Note that in WRMs, the number of weight 
functions Wi always equals the number of 
unknown constants ci in u . This yields n 
algebraic equations for the unknown constants ci. 
In the weighted residual method, the selection of 
weight functions affects its performance. 
Different numerical approximation methods can 
be obtained by selecting different weight 
functions. In the following subsections, two 
methods are discussed. 
 

     2

y y
S R y R y dy R y dy       (30) 

 
3.1. Least square method (LSM) 
 
In this method, the summation of all the squares 
of the residues should be minimized.  
 

 2 0
y

i i

S RR y dy
c c
 

 
 

  
(31) 

Comparing with Eq. (29), the weight functions 
are obtained (as its value should be zero, its 
constant is not considered). 

i
i

RW
c



   

(32) 

 
In order to use the least square method in this 
problem, the considered function f(η) must be 
satisfied the boundary conditions of the problem. 
This function is considered as Eq. (33). 
 

   

   

   

 

2 2 3
1

2 4 2 5
2 3

2 6 2 7
4 5

2 8
6

f c

c c

c c

c

   

   

   

 

   

   

   



  (33) 

 
In Table 1 a comparison is done between the 
polynomial profiles in order 4 to 8 for f(η) and f 
'(η) and the Re =0.05 and k1 = 1and in η =0.5. 
Because of the relative error variations is too low 
and close to zero, for profiles with the order of 7 
and 8, a polynomial with the order of 7 is used. 
By applying the boundary condition in Eq. (33) 
and with regard to the obtained relationship from 
Eq. (31), the coefficient c1-c5 are achieved. The 
residual function for momentum is obtained by 
applying Eq. (33) into the Eq. (18). Substituting 
the residual function into Eq. (31), a set of five 
equations is obtained and by solving these 
algebraic equations, the coefficients c1–c5 are 
determined. 
For example, using the least square method for a 
non-Newtonian fluid with

0.01, Re 0.5,Pr 1K    , the Eq. (34) for 
momentum is obtained: 
 

  2

3

4

5

6

7

3.178381534

2.21635865
0.08139024555
0.06060567405
0.09648632388
0.03772463507

f  











 









  
(34) 

By substituting Eq. (34) into Eq. (24), qn (η) is 
obtained by the same process. The approximate 
function for temperature distribution with regard 
to satisfying the boundary condition in Eq. (25) 
is considered as Eq. (35). 
 

 

Table 1. Comparisons the effect of polynomial profiles on the values of f and f '. 
Polynomial 

degree f(0.5) f'(0.5) The relative-error 
percent of f 

The relative-error 
percent of f ' 

4 0.509764 1.499999 1.594958 1.055954 
5 0.501761 1.516008 0.011332 0.128601 
6 0.501818 1.517960 0.004155 0.011476 
7 0.501797 1.517786 0.000173 0.009969 
8 0.501798 1.517809 - - 
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   

   

   

2
1

3 4
2 3

5 6
4 5

1nq c

c c

c c

   

   

   

    

  
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  (35) 

 
In Table 2 the polynomial profiles in order 2 to 
4 are compared to q(η) in η=0.05 and for the 
predetermined conditions Pr =1 and n=2. Due to 
changes in the relative error is too low and near 
zero, for profiles with the order of 3 and 4, a 
polynomial with the order of 3 is used. The 

 nq  is obtained by using the Eq. (36). 

 
2

3

1 1.406208099

0.1293490457
0.5380673028

nq  





  

    (36) 

 
Table 2. Comparisons of the effect of polynomial 
profiles on the values of q. 

Polynomial 
degree 

q The relative-error 
percent of q 

2 0.486462 0.051465 
3 0.486212 0.014854 
4 0.486140 0.00000 
5 0.486140 - 

 
 

3.2. Galerkin method (GM) 
 
The Galerkin method can be viewed as a 
particular weighted residual method, in which 
the trial functions used for the approximation of 
the field function are also used as the weight 
functions. 
 

1,2,3,..,i
i

uW i m
c


 
   

(37) 

 
Now, the Galerkin method is used to find the 
dimensionless velocity profile, (f(η)). In this 
case, the weight functions are defined as 
follows: 

2 3 2 4
1 2

2 5 2 6
3 4

2 7
5

, ,

, ,

,

W W
W W

W

   

   

 

   

   

 

  (38) 

 

Such as the previous case, by applying the 
residual function into Eq. (29), a set of algebraic 
equations appears and by solving them, 
coefficients c1–c4 are achieved. f(η) for a second 
grade non-Newtonian fluid with K=0.01, 
Re=0.5 and Pr=1 is as follows: 
  2

3

4

3.176198950

2.1969055
0.1352125596

f  





 

   (39) 

 

Considering Eq. (35) as a trial function, weight 
functions are: 

2 3
1 2

4
3

, ,     

  

   

 
  (40) 

The dimensionless temperature profile, q (η), is 
obtained as follows: 

 
 

2

3

4

1 1.424202217

0.1844617494
0.4988139827
0.259073514

nq  







  





  (41) 

 

4. Results and discussion 

 
In the present study, the Galerkin and the least 
squares methods are used to obtain analytical 
solutions for the laminar flow of a non-
Newtonian fluid in an axisymmetric channel 
with porous walls. At first, a comparison is done 
between the least square and Galerkin methods 
with the numerical results of fourth order Rung–
Kutta method with 10-6 convergence precision. 
With regard to various parameters of flow and 
heat transfer in Tables 3 and 4 and Figs. 3-6, 
these methods are compared and there is a good 
agreement between the numerical and 
analytical methods. The tables show that the 
GM is more accurate and has less error than the 
LSM. That is why the GM is used to evaluate 
the effect of Re, Pr, n parameters on profiles f, 
f   and qn and the Nusselt number. Error in 
these tables is calculated by Eq. (42). 
 

Analytical-Numerical
Error =100×

Numerical
 (42) 
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Table 3. Comparison of numerical method and Galerkin and least squares analytical methods in k1 = 0.001 and 
Re = 0.5 for the velocity component f. 

%Error GM %Error LSM GM LSM Num η 

0 0 0 0 0 0 
0.02707001 0.030453761 0.029561 0.029562 0.029553 0.1 
0.009149131 0.006404392 0.10931 0.109307 0.1093 0.2 
0.001328662 0.005757537 0.225794 0.225778 0.225791 0.3 

0 0.009846288 0.36562 0.365584 0.36562 0.4 
0.000387869 0.009502791 0.51564 0.515589 0.515638 0.5 
0.00060318 0.006785775 0.663156 0.663107 0.663152 0.6 
0.000376827 0.003642662 0.796124 0.796092 0.796121 0.7 

0 0.001328452 0.903307 0.903295 0.903307 0.8 
0 0.000205257 0.974386 0.974384 0.974386 0.9 
0 0 1 1 1 1 

 
Table 4. Comparison of numerical method and Galerkin and least squares analytical methods in k1 = 0.001, Re = 
0.5, Pr=1 and n=2 for the temperature distribution components qn. 

Error GM Error LSM GM LSM Num η 

0 0 0 0 0 0 
0.056983569 0.149669088 0.860387 0.861184 0.859897 0.1 

0.095374279 0.165976017 0.725918 0.727817 0.726611 0.2 

0.113032911 0.246208653 0.600031 0.609189 0.60071 0.3 

0.109868591 0.172120587 0.484592 0.48596 0.485125 0.4 
0.013151873 0.002630375 0.380224 0.380164 0.380174 0.5 
0.205556313 0.294700632 0.286641 0.28521 0.286053 0.6 

0.317297142 0.721084939 0.202976 0.200875 0.202334 0.7 

0.085176213 1.292490427 0.128079 0.126316 0.12797 0.8 

0.858229046 2.01014864 0.060763 0.060057 0.061289 0.9 
0 0 1 1 1 1 

 

 

 
(a) (b) 

Fig. 3. Comparison of the velocity components of numerical and analytical methods,  (a) f, (b) f ' for k1=0.001 
and Re=1. 
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Fig. 4. Comparison of the temperature profiles of 
numerical and analytical methods (qn), for 
k1=0.001 and Re=1. 
 

 
(a) 

 
(b) 

Fig. 5. Comparison of the velocity components of 
numerical and analytical methods,  (a) f, (b)f ' for 
k1=0.01 and Re=0.5. 

 
Fig. 6. Comparison of the temperature profiles 
of numerical and analytical methods (qn), for 
k1=0.01 and Re=0.5. 
 
Figure 7 illustrates the effect of Reynolds 
number on the velocity profiles. As can be 
seen in this figure, by increasing velocity in 
the z direction, the Reynolds number 
increases. Also, the velocity in the r direction 
and near warm plate (z=0) increases and near 
the permeable wall (z=L) decreases. Also by 
increasing the Reynolds number, the 
maximum velocity value in the z direction 
approaches the warm plate. Although at low 
Reynolds numbers, the maximum value is 
taken place in the center of the channel. This 
change is due to intensify the velocity gradient 
near the warm plate and by increasing shear 
stress due to augmentation of the Reynolds 
number.  
In Table 5 the effect of non-Newtonian fluid 
viscosity on the local friction coefficient (

 0f  ) is examined. As can be seen, in constant 
k, by increasing the Reynolds number,  0f   
increases, and because of the Reynolds 
number reflects the importance of the inertia 
effect to the effect of the viscosity, this 
conclusion is correct. Also, in a constant 
Reynolds number, by increasing the k,  0f   
decreases, and due to the reduction of surface 
friction, using the viscoelastic fluid for 
cooling the gas turbine is recommended than 
Newtonian fluids. 
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(a) 

 
(b) 

Fig. 7. The effect of Reynolds number on the 
velocity components, (a) f, (b) f 'for k1 = 0.005. 
 
Figure 8 indicates the effect of Reynolds 
number on the two-dimensional temperature 
distribution inside the channel.  
In low Reynolds numbers because of the 
laminar flow between the fluid layers, the 
parameter of temperature distribution along the 
z direction decreases continuously and in 
constant slope toward the permeable plate. But 
by increasing the Reynolds number the inertia 
effect is dominant than the effect of the 
viscosity, this uniform distribution disturbs and 
coolant inlet fluid, reducing the temperature at 
a constant η. 
In Fig. 9, the effect of power law index on the 
temperature profile is shown. As can be seen, in 
a constant η by increasing power law index, the 
temperature value decreases. This indicates that 
the temperature distribution profile with low 
power law index calculates the temperature 
more than the actual amount and for estimating 
this problem temperature is not desired. 
Figures 10 and 11 show the effect of the Prandtl 
number, Reynolds number and power law index 

on the Nusselt number. The Nusselt number is 
defined (  0nNu q    ). As can be seen with 
augmentation of the Prandtl number, the 
Nusselt number increases. According to the 
definition of the Prandtl number which is the 
thickness of the velocity boundary layer to the 
thermal boundary layer, increasing the Prandtl 
number means reducing thermal boundary layer 
thickness. Reducing the thickness of the thermal 
boundary layer means increasing the heat 
transfer or in other word augmentation the 
Nusselt number. As shown in Fig. 11, by 
increasing the power law index, the Nusselt 
number increases. Indeed, the calculated 
temperature gradient in low power law index 
calculates the Nusselt number less than the 
actual value. Also by increasing the Reynolds 
number, the Nusselt number increases. Because 
increasing the Reynolds number causes the 
disturb augmentation of the thermal 
stratification on the heating plate and increases 
the heat transfer. 
 

 
Fig. 8. The effect of the Reynolds number on the 
temperature distribution components (qn) for 
k1=0.005, n = 2 and Pr = 1. 

 
Fig. 9. Effect of n on temperature distribution 
component (qn) for k1 = 0.005, Re = 0.5 and Pr = 1
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Table 5. The effect of k1 on friction surface (f '' (0)). 
Re k=0.0005 k=0.001 k=0.005 K=0.01 
1 6.759073 6.757035 6.740617 6.719805 
2 7.563378 7.529791 7.500940 7.463308 
3 8.359470 8.300261 8.264010 8.215300 
4 9.132730 9.063536 9.028690 8.981154 

 
Table 6. The effect of k1 on the Nusselt number for Pr=1and n=2. 

Re k=0.0005 k=0.001 k=0.005 K=0.01 
1 1.998542 1.998563 1.998737 1.998962 
2 2.743290 2.743509 2.745301 2.747659 
3 3.376013 3.376643 3.379777 3.388768 
4 3.936068 3.937253 3.947090 3.960340 

 
Fig. 10. Effect of n on temperature distribution 
component (qn) for k1 = 0.005, Re = 0.5 and Pr =1. 
 
 

 
Fig. 11. Variations of the Nusselt number for 
different values of Pr at n=2 and k1 = 0.005. 

 

Table 6 represents the effect of the Reynolds 
number and non-Newtonian fluid viscosity 
parameter on the Nusselt number. As already 
mentioned, increasing the Reynolds number 
leads to increase heat transfer, and thus increases 
the surface friction. Using the non-Newtonian 
fluid the amount of friction can be reduced to 
some extent. Also, it is observed that increasing 
the viscosity of the fluid conduces to an increase 
in the Nusselt number. For instance, the Nusselt 
number for k=0.005 and Re=4, and for k=0.01 
and Re=4 have 0.6 percent discrepancy. 

 
5. Conclusions 

 
In this study, the methods of GM and LSM are 
used for solving the heat transfer problem of a 
non-Newtonian fluid flow in an axisymmetric 
channel with porous walls. Their conformity 
results with the numerical results in velocity and 
temperature profiles and tables are shown. The 
Galerkin method has further adaptation with the 
numerical results than the LSM. Then the effect 
of the Reynolds number, Prandtl number, power 
law index and non-Newtonian fluid viscosity on 
the flow and heat transfer are investigated. The 
results suggest that increasing the Reynolds 
number causes the augmentation velocity 
component. Also by increasing the Reynolds 
number, the maximum value of the f diagram 
tends to warm plate. It is observed that the 
surface friction decreases with increasing 
viscosity. Also, the Nusselt number has a direct 
relationship to the Reynolds number.  
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