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ABSTRACT. We present explicit formulas for the values of augmented eccentric 
connectivity indices of single-defect nanocones. Our main result is that the augmented 
eccentricity index of an n-layer nanocone with a single k-gonal defect at its apex behaves 
asymptotically nk )2ln1(27   for 5k . 

 

Keywords: eccentricity, nanocone, augmented eccentric connectivity index. 

 

1. INTRODUCTION  
Single-defect nanocones are hypothetical nanostructures that arise by 

accretion of several layers of hexagons around a single non-hexagonal polygon. They 
can be obtained from the graphene lattice by introducing a non-hexagonal defect and 
inserting or removing the corresponding number of 600 sectors of hexagons. Defects 
with less than six sides introduce positive curvature; those with more than six sides 
result in a negative-curvature cone. The pentagonal nanocones have been actually 
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generated and observed by Ge and Sattler in 1994 [6]. It has been long conjectured 
that they play an important role in the process of fullerene synthesis.  

Single-defect nanocones posses a high degree of symmetry andregularity. That 
property facilitated explicit computation of several topological invariants, in 
particular those based on topological distances. Most of the results of such type were 
obtained by using the method of cuts; we refer the reader to a very informative survey 
[7] and references therein for more details. Another approach made use of the fact 
that certain distance-based invariants behave polynomialy in the number of vertices 
(or layers of hexagons) and allowed for explicit computation of such invariants by 
fitting. As an example, we mention recent papers on the eccentric connectivity index 
of single-defect nanocones [1, 8] and papers dealing with some distance-based 
invariants of several types of lattices [2, 3]. 

The main goal of this paper is to compute the augmented eccentric connectivity 
index of general single-defect nanocones. For that invariant neither of the mentioned 
approaches can be exploited, since the distances involved appear in denominators, 
resulting in a nonpolynomial behavior. Our results are closed formulas in terms of 
digamma function of a linear combination of two defining parameters, the size k of the 
non-hexagonal defect at the apex and the number n of layers of hexagons around it. It 
turns out that for large nanocones the augmented eccentric connectivity index 
behaves asymptotically as a linear function of n. 

 
2.  DEFINITIONS AND PRELIMINARIES 

 
Let G be a graph on p vertices. We denote the vertex and the edge set of G by 

V(G) and E(G), respectively. For two vertices u and v of V(G) we define their distance 
d(u, v) as the length of any shortest path connecting u and v in G. For a given vertex u 
of V(G) its eccentricity )(u  is the largest distance between u and any other vertex v of 
G. Hence, ),(max)( )( vudu GVv . The maximum eccentricity over all vertices of G is 
called the diameter of G and denoted by D(G); the minimum eccentricity among the 
vertices of G is called the radius of G and denoted by R(G). The set of all vertices of 
minimum eccentricity is called the center of G. 

The augmented eccentric connectivity index )(GA of a graph G is defined as 





)( )(

)()(
GVu

A

u
uMG


 , 

where )(uM  denotes the product of degrees of all neighbors of vertex u. It was 
introduced in a paper [5] concerned with various modi ications of the eccentric 
connectivity index. We can see that the vertex contributions are both nonlocal (the 
degrees are taken over the neighborhoods and then multiplied) and non-linear in 

)(u . The combination of those two properties makes the augmented eccentric 
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connectivity index rather unyielding to the standard approach to distance-based 
invariants, resulting in a number of difficulties arising when one tries to obtain 
explicit formulas or find the extremal graphs and values. 

A single-defect k-gonal nanocone is obtained by taking a cycle on k vertices Ck 
and 
surrounding it by certain number of concentric layers of hexagons so that all internal 
vertices are of degree 3. If there are n layers of hexagons, we denote such graph by 
CNCk[n]. 

For n = 0 we obtain just the k-gon Ck. An example is shown in Fig. 1. Obviously, 

for all 3k , CNCk[n] is a planar graph with one k-gonal and 






 
2

1n
k  hexagonal faces. 

 
Fig. 1: A single-defect nanocone with pentagonal apex. 

 

We consider in this paper only the case 5k . The reason is that the 
eccentricities of vertices in such nanocones behave in a very regular way. The 
remaining two cases, 3k  and 4k , are also less interesting from the chemical point 
of view, since carbon atoms do not readily form short cycles. 

It is easy to show by induction on n that there are exactly kn )12(   external 
vertices 
in CNCk[n]. (A vertex is external if it lies on the boundary of the unbounded face of 
CNCk[n]; otherwise, the vertex is called internal.) An immediate consequence is the 
formula for the number of vertices in CNCk[n]. 

 

Proposition 1. 
2)1(|])[(|  nknCNCV k . 

Jo
urnal of M

ath
em

atical N
anoScien

ce
 



T. DOŠLIĆ & M. SAHELI                                                                                                       JMNS 
 

 

Further, we observe that there are four types of vertex neighborhoods in 
CNCk[n]. For all internal vertices, the product of their neighbors’ degrees is equal to 
27. Then, there are nk external vertices of degree 3; for all of them, 12)( uM . There 
are exactly k2  external vertices of degree 2 whose neighbors are of degree 2 and 3, 
and finally, there are kn )1(   vertices of degree 2 whose both neighbors are of degree 
3. 
 

3.  MAIN RESULTS 
Throughout this section we assume 5k . It is obvious from the symmetry 

argument that the center of CNCk[n] is made of the vertices of the central k-gon. Their 

eccentricities (and hence the radius of CNCk[n]) are equal to nk 2
2





 . The claim 

follows directly by induction on n . By the same inductive argument it follows that the 
eccentricities of vertices increase by 2, 3, or 4 with each new layer of hexagons. This 
results in the following bounds on the eccentricity )(u of a vertex u  of CNCk[n]. 

 
Proposition 2. 

Let u  be a vertex of CNCk[n] for some 5k . Then 

nkunk 4
2

)(2
2









  . 

Hence, the eccentricities of vertices start at nk 2
2





  and increase by one till 

they reach nk 4
2





 . The next task is to find the number of vertices of a given 

eccentricity. Again, by simple symmetry and counting arguments, we obtain the 
following result. 

 

Proposition 3. 

The number of vertices of CNCk[n] with the eccentricity equal to jnk




 2

2
 is 

equal to njk 2
2





 . 

Now we have all the elements necessary for computing ])[( nCNCk
A . It is clear 

that the contribution of external vertices will be marginal in comparison with the 
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contribution of internal vertices. Indeed, the total contribution of external vertices is 
given by 

nk
nk

nk
knknE

4
2

)13(3

14
2

12),(















 . 

The first term on the right-hand side comes from the vertices of degree 3, and 
the second term from the two types of vertices of degree 2. 

The total contribution of internal vertices is obtained by summing over 

]22,0[  nj of terms of the form 
jnk

jk













2
2

)1
2

(
multiplied by 27)( uM . The sum in 

the resulting expression  




 











22

0 2
2

1
227

n

j jnk

j

k . 

can be expressed as 

 






  

























1

1

22

0 1 122
2

222
2

2
2

1
2 n

j

n

j

n

j jnk
j

jnk
j

jnk

j

. 

The sums in the right-hand side can be expressed in terms of digamma function, 


 






































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



n
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n
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

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
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j  . 

 Here )(x  denotes the digamma function, defined as the logarithmic derivative of the 
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gamma function, 
)(
)()(

x
xx




 . 

Now we could write down the formula for the augmented eccentric connectivity index 
of a general nanocone with single k-gonal defect at its apex. However, the resulting 
expression would be quite unwieldy; we leave the task to the interested reader. 
Instead, we will try to extract the information relevant for the asymptotic behavior. 
Crucial is the observation that the differences of digamma functions on the right-hand 
side of the obtained formulas tend to 2ln  for large values of n . By expanding the 
above expressions into a power series around   we obtain  

)1(2ln
4
1

8
1)2ln1(27

2
2

1
227

22

0 n
Onk

jnk

j

k
n

j




 


















. 

Now, by taking into account that kknE
4
21),(  , we obtain the asymptotic behavior of 

])[( nCNCk
A . 

Proposition 4. 

)1(
8
692ln

4
1)2ln1(27])[(

n
OknknCNCk

A 



  . 

 

Hence, the augmented eccentric connectivity index of a single-defect nanocone 
increases linearly with the number of hexagon layers. It means that it behaves 
proportionally to the square root of the number of vertices. For the two most 
interesting cases, the pentagonal nanocone CNC5[n] and the “flat” nanocone CNC6[n] 
we obtain the asymptotic behavior of the form 7313.194251.41])[( 5  nnCNCA  and 

6775.237102.49])[( 6  nnCNCA , respectively. The quality of approximation is 
illustrated by the fact that the approximate value of 433.983 is quite close to the exact 
value of 238.433])10[( 5 CNCA . 

 
4. CONCLUDING REMARKS 

In this paper we have determined the behavior of the augmented eccentric 
connectivity index of general single-defect nanocones. It was found that it behaves 
linearly in the number of hexagon layers for large values of n. It would be interesting 
to extend the present results to the case of cones with multiple defects and to the 
cones resulting from introducing defects into other regular tilings of the plane. The 
approach used here could be also suitable for computing augmented eccentric 
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connectivity indices of narrow hexagonal nanotubes, of tubular fullerenes and of 
reticular benzenoid graphs such as those considered in [4]. 
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