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1. Introduction element method (called the splitting positive
definite mixed finite element procedure) for
A parabolic partial differential equation models treating the pressure equation of parabolic type
the flow of water in a porous medium, which in a nonlinear parabolic system which described
pore spaces may contain water and air. a model for compressible flow displacement in
Recently, many researchers have studied a porous medium. Compared with the standard
numerical methods for parabolic equations, mixed finite elements methods with quite

such as finite element methods—4], mixed difficult numerical solutions because of losing
finite element methods 9], finite volume positive definite properties, the proposed one
element method [10], etc. did lead to any saddle point equations.

Chen [1113] proposed a new mixed method In this paper, the following parabolic equations
and proved some mathematical theories for were considered:

second-order linear elliptic equations. Yang et p, — O K (x,t)0p) = f (x,t),(x,t) 0QxJ,

al. [14-16] proposed a new mixed finite p(x,t) = 0,(x,t) 10Q x J,
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p(X,O) = po (X)! XD Q,
where Q is a bounded convex domain R?
with the smooth boundary @fQ , J = (0, T].

At first, the following assumptions were made
for the parabolic equation. The positive

(1.1)

constantsK, and K™ existed such that
0<K,<sK(xt)<sK'.
By L°(Q) denoting the standard Banach space,

the standard Sobolev space with notfd], ,

can be denoted By ™" (Q) .
The functional spaced/ = L*(Q),

V = H(div.Q) ={vO( ()2 0 v X Q)}

can be introduced.

Also, the auxiliary variables

r=-0p, o=K(Xtr

can be introduced.

Then, the equivalent system of parabolic
equations can be derived for Eq. (1.1)

p, +0OL = f(xt),(xt)0QxJ,
rT+0p=0,(xt)d0QxJ,

o-K(Xxt)r=0,(xt)d0QxJ,

with the initial values

P(Xt) = Po(X),

7(x,0) = -0py(x),
o(x,0)=K(x,0x (x,0.

Then, the following weal formulation of Eg.

(1.2) can be given by

(p,,w) +(OLo,w) = (f,w),OwOW,
(r,v)—(p,0[v) =0,0v0OV,
(o,v)-(Kr,v)=0,0vV. (1.3)

The plan of this paper is as follows. In Section
2, a new semi-discrete mixed finite element

(1.2)

scheme is constructed for parabolic equations.

In Section 3, an error estimate is derived for the
mixed finite element solutions. Finally, a
numerical example is presented in Section 4 to
show theoretical results. A conclusion is
presented in Section 5.
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2. A new semi-discrete mixed finite e ement
scheme

From the second item of Eq. (1.3), the
following can be derived:
(7,v)—-(p,0)=0,0v0 V. (2.1)

By taking w=[l[v in the first item of Eq.
(1.3) for vV and then substituting it into
(2.1), a new equivalent weak formulation of Eq.
(1.3) was obtained

(p,w) +(OLo,w) = (f,w),OwOW,

(r,, 0+ (O, 0y = (f, 00y, 0OvOV,
(o,v)-(Kr,v)=0,0v0OV. (2.2)
T, denotes a quasi-uniform partition I into

rectangles or triangles with the partition step
Also, W, and V,, are Brezzi -Douglas-Fortin-
Marini mixed finite element spaces on the

partitionT, .
Now, the positive definite semi-discrete mixed

finite element method for Eq. (2.2) can consist
of determining

(P, T, 0,) OW, XV, XV,
such that
(P Wy) + (O, w,) = (F,w,), 0w, OW,,

(7, O0,) + (00, O0%,) = (F,00v,),Ov, OV,
(g,,v,) - (Kr,,v,) =0,0v, OV,, (2.3)
with a given initial approximation

(pr?,Tr?,U,?)DWh XV, XV,
Theorem 1. There exists a unique discrete
solution to systems (2.3).

Proof. Let{g,(X)}'& and{#,(X)}2 be bases
of W, andV, , respectively. Let

= Zl: p. (O (t),

i=1

1= 2.7,08,0),

Py
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N,
g, =20, (1),

i=1
and substitute these formula into Eqg. (2.3) while
choosingw, =¢,,, V,, = @,. Eq. (2.3) can be
find

written in a vector matrix form as:
{P@®),I(t),Z(t)} such thatOt (0, T]

DP (t) + EZ(t) = G(t),
Al (t) + BZ(t) = F (1),
AS(t)-Cr(t) =0,
where

(#,.8)) .,
(Cw,.0m) )N ",
(Ke,.8)), .,
«ww»wm

(O, )y
((f®).08))L.,

((F (). B))ien,

(p, ), p, @)y, T,
= (r,0), 7, 01, T
=(a,(),0,(t) 0o, ).

It is easy to see thdD and A are symmetric
positive definite. Using the theory of
differential equations, this system had a unique
solution.

A=
B
C
D
E
F
G
P

3. Error estimates

Now, an operatoR, is defined fromV onto
V, in mixed finite element spaces such that
(0o -R,0),v,)=00v, OOV,

_ k+1

(Wk+1.Z(Q))2 ’

k+1
1000 = R0l gy < CH 1D g

néw positive definite . . .
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Also, the L*-project operatorP, is defined
from L?(Q) ontoV, such that

(v—-PRv,v,)=0,0vOL*(Q),v, OV,,
[[v=PRv], < CH™" |[v]] ] H* Q

(Q) k+1‘Z(Q)

Using the definitions of the operatofR, and

B, t he following theorem can be easily

derived.
Theorem 2. Assume that the solution of Eq.
(2.2) has regular properties that

P, P DL (H*(Q)),
r,,7,,0,,0, JL*(H“Y(Q))

Then, the following estimates are assumed
k+1
” (T - th)t ”(LZ(Q))ZS Ch " “ Z-t ”(Wkﬂ-Z(Q))Z 1

k
” (T - th)tt ”(LZ(Q))ZS Ch +1 || TIT ||(Wk+1,2(Q))2 1
|(c -R.0) ||(L2(Q))Zs Ch* ||, ||(Wk+1,z(m)z,

I[(p- P p)t ”LZ(Q)S Ch** | Py ”\NMZ(Q)
Let

P-pP,=Pp-Rp+Rp-p,
r-r7,=7-Rr+Rr7-17,,

o-0,=0-Ro+Ro0o-0,
Subtracting (2.3) from (2.2) results in obtaining

((ph - p)t'Wh) +(U [qah _U)1Wh) =0, Owi, OW,,
((r, - 1), 0) +([OHo, -0),0,) =00V, OV,
(g, —o),v,) - (K(r, —1),v,) =0,0v, OV,,.
Using the operatordR, and B,, the following
is derived

((ph _Php)t’Wh)+(|:|[(0h
=((p— R p),W,),

-R,0),w,)
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((r, -R,1),,00v,)+(0O1(o, -R,0),01v,)
=(Ri7-1,),,00,) +(0Ho -R,0),0 ),
(0, -R0O), V)~ (K(7,~ R7), W)
=((Ro-0),v).+(K(RT-7),V)

Combination of Theorem 2, Cauchy-Schwarz’s
inequality and Gronwall's lemma causes to
easily obtain the following theorem.

Theorem 3. Assume that the solution of Eg.
(2.2) has regular properties that

P, by OL2(H(Q)),
I,,T,,0,,0, JL*(H“(Q)).

Then, the following error
presented

estimates are

_ k+1
” p ph ”|_°°(|_2(Q))S Ch 1

k+1
”T_Th ”|_°°(|_2(Q)) + ||U_Uh ”|_°°(|_2(Q))S Ch * ’

< Ch**,

L™ (L*(Q))

|0 -0, ||

4. Numerical example

In the section, an example is provided to
validate the theoretical results. The considered
equation is

p, —OI(K(x)Up) = f(x.t),(x,t) Q= (O],

p(x.t) = 0,(x,t) 1oQ x (01],

p(x,0) =0,x0Q,
where
Q=[01]%, K(x1)=pxt), X=(%.X,).

Let the exact solution of the above equations be
p(x,) = XX, (L= %, )AL= X, )sint .
Then, the right term can be obtained
f(x,t)=p -0 pdp
=xX, (I- x )(I= x, )cog
- (F &~ & X (& x ) sift
- (+ & - 6 X (& x ) sift
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In order to show efficiency of the new positive

definite mixed finite element methods, the

methods were compared with the standard
mixed finite element methods.

The numerical results are shown in Tables 1
and 2.

From the numerical results of Tables 1 and 2, it
can be shown that the test results coincided
with the theoretical analysis and the new
positive definite mixed finite element methods

spent less time than the standard mixed finite
element methods. Then, it would be clear that
the new positive definite mixed finite element

methods are more efficient.

Table 1. L*(L?) errors and CPU time of the
standard mixed finite element methods.

h L (LZ) errors CPU time (s)
1

2 5.67245e-03 126.08

1

é 2.81856e-03 655.61

1—16 1.27335e-03 3868.13

Table 2. L*(L?) errors and CPU time of the new
positive definite mixed finite element methods.

L (L2) errors CPU time (s)
1
2 5.68956e-03 2.4246
1
s 2.90786e-03 11.7073
1
16 1.36892e-03 63.4119

5. Conclusions

In this paper, a positive definite semi-discrete
mixed finite element method was analyzed for
parabolic equations. In the new positive definite
systems, the gradient equation and flux
equations were separated from their scalar
unknown equations. The existence and
uniqueness were proven for the semi-discrete
mixed finite element solutions. Next, error
estimates were derived for the semi-discrete
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schemes. Finally, a numerical example was
provided to prove the efficiency of the new
positive definite mixed finite element methods.
In Fig. 1, a flow chart of this paper is presented
in order to show the main process.

The Original
Problems (1.1)

B

The Equivalent
System (1.2}

. The Weak
Formulation

(1.3)

‘ The Equivalent
Formulation

(2.2)

The Discrete
Problems (2.3)

Error Estimates

(Theorem 3)

Uniqueness
(Theorem 1)

Fig. 1. The method flow chart.
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