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Abstract 
In this paper, a positive definite semi-discrete mixed finite element method was 
presented for two-dimensional parabolic equations. In the new positive definite 
systems, the gradient equation and flux equations were separated from their 
scalar unknown equations.  Also, the existence and uniqueness of the semi-
discrete mixed finite element solutions were proven. Error estimates were also 
obtained for the semi-discrete schemes. Finally, a numerical example was 
presented to show theoretical results. 
 

 

 

1. Introduction  
 

A parabolic partial differential equation models 
the flow of water in a porous medium, which 
pore spaces may contain water and air. 
Recently, many researchers have studied 
numerical methods for parabolic equations, 
such as finite element methods [1‒4], mixed 
finite element methods [5‒9], finite volume 
element method [10], etc. 
Chen [11‒13] proposed a new mixed method 
and  proved  some  mathematical  theories  for  
second-order linear elliptic equations.  Yang et 
al.  [14‒16]  proposed  a  new  mixed  finite  

 
 
element method (called the splitting positive 
definite mixed finite element procedure) for 
treating the pressure equation of parabolic type 
in a nonlinear parabolic system which described 
a model for compressible flow displacement in 
a porous medium. Compared with the standard 
mixed finite elements methods with quite 
difficult numerical solutions because of losing 
positive definite properties, the proposed one 
did lead to any saddle point equations. 
In this paper, the following parabolic equations 
were considered:   

,),(),,()),(( JtxtxfptxKpt ×Ω∈=∇⋅∇−    

,),(,0),( Jtxtxp ×Ω∂∈=                         
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,),()0,( 0 Ω∈= xxpxp                              (1.1) 

where Ω  is a bounded convex domain in 2R  

with the smooth boundary of Ω∂ , ],0( TJ = . 

At first, the following assumptions were made 
for the parabolic equation. The positive 

constants *K  and *K  existed such that  
*

*0 ( , )K K x t K< ≤ ≤ . 

By )(ΩpL  denoting the standard Banach space, 

the standard Sobolev space with norm pm,||||⋅  

can be denoted by )(, ΩpmW . 

The functional spaces )(2 Ω= LW , 

2 2 2( ; ) { ( ( )) ; ( )}V H div v L v L= Ω = ∈ Ω ∇ ⋅ ∈ Ω  

can be introduced. 
Also, the auxiliary variables 

,       ( , )p K x tτ σ τ= −∇ =   

can be introduced.  
Then, the equivalent system of parabolic 
equations can be derived for Eq. (1.1) 

,),(),,( Jtxtxfpt ×Ω∈=⋅∇+ σ  

,),(,0 Jtxp ×Ω∈=∇+τ                         (1.2) 

,),(,0),( JtxtxK ×Ω∈=− τσ  

with the initial values  

)(),( 0 xptxp = , 

)()0,( 0 xpx −∇=τ , 

 ( ,0) ( ,0) ( ,0)x K x xσ τ= . 

Then, the following weal formulation of Eq. 
(1.2) can be given by 

,),,(),(),( Wwwfwwpt ∈∀=⋅∇+ σ     

,,0),(),( Vvvpv ∈∀=⋅∇−τ                     

( , ) ( , ) 0,v K v v Vσ τ− = ∀ ∈ .               (1.3) 

The plan of this paper is as follows. In Section 
2, a new semi-discrete mixed finite element 
scheme is constructed for parabolic equations. 
In Section 3, an error estimate is derived for the 
mixed finite element solutions. Finally, a 
numerical example is presented in Section 4 to 
show theoretical results. A conclusion is 
presented in Section 5.  

2. A new semi-discrete mixed finite element 
scheme 
 

From the second item of Eq. (1.3), the 
following can be derived:  

( , ) ( , ) 0,t tv p v v Vτ − ∇ ⋅ = ∀ ∈ .          (2.1) 

By taking vw ⋅∇=  in the first item of Eq. 

(1.3) for Vv∈  and then substituting it into 
(2.1), a new equivalent weak formulation of Eq. 
(1.3) was obtained 

,),,(),(),( Wwwfwwpt ∈∀=⋅∇+ σ  

,),,(),(),( Vvvfvvt ∈∀⋅∇=⋅∇⋅∇+⋅∇ στ      

( , ) ( , ) 0,v K v v Vσ τ− = ∀ ∈ .              (2.2) 

hΤ denotes a quasi-uniform partition of Ω  into 

rectangles or triangles with the partition step h . 
Also, Wh and Vh are Brezzi -Douglas-Fortin-
Marini mixed finite element spaces on the 

partition hΤ . 

Now, the positive definite semi-discrete mixed 
finite element method for Eq. (2.2) can consist 
of determining 

 hhhhhh VVWp ××∈),,( στ   

such that 
,),,(),(),( hhhhhhht Wwwfwwp ∈∀=⋅∇+ σ
,),,(),(),( hhhhhhht Vvvfvv ∈∀⋅∇=⋅∇⋅∇+⋅∇ στ

,,0),(),( hhhhhh VvvKv ∈∀=− τσ          (2.3) 

with a given initial approximation  

hhhhhh VVWp ××∈),,( 000 στ . 

Theorem 1. There exists a unique discrete 
solution to systems (2.3). 

Proof. Let 1
1)}({ N

ii x =ψ  and 2
1)}({ N

ii x =ϕ  be bases 

of hW  and hV , respectively. Let 

∑
=

=
1

1

)()(
N

i
iih ttpp ψ , 

∑
=

=
2

1

)()(
N

i
jjh tt ϕττ , 
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∑
=

=
2

1

)()(
N

i
jjh tt ϕσσ , 

and substitute these formula into Eq. (2.3) while 

choosing mhw ψ= , lhv ϕ= . Eq. (2.3) can be 

written in a vector matrix form as: find 

{ )(),(),( ttt ΣΓΡ } such that ],0( Tt ∈∀  

),()()(' tGtEtD =Σ+Ρ  

),()()(' tFtBtA =Σ+Γ  

,0)()( =Γ−Σ tCtA  

where  

( )
22

),(
NNljA

×
= ϕϕ , 

( )
22

),(
NNljB

×
⋅∇⋅∇= ϕϕ , 

( )
22

),(
NNljKC

×
= ϕϕ , 

( )
11

),( NNmiD ×= ψψ , 

( )
21

),(
NNmjE

×
⋅∇= ψϕ , 

( )T

NltfF
21)),(( ×⋅∇= ϕ , 

( )T

NmtfG
11)),(( ×= ϕ ,  

( ) ,,),(),(
121

T
Nptptp ⋅⋅⋅=Ρ  

( ) ,,),(),(
221

T
Ntt τττ ⋅⋅⋅=Γ  

( )
21 2( ), ( ), ,

T

Nt tσ σ σΣ = ⋅ ⋅ ⋅ . 

It is easy to see that D  and A  are symmetric 
positive definite. Using the theory of 
differential equations, this system had a unique 
solution.  
 
3. Error estimates 
 

Now, an operator hR  is defined from V  onto 

hV  in mixed finite element spaces such that  

hhhh VvvR ⋅∇∈∀=−⋅∇ ,0)),(( σσ , 

22,122 ))((

1

))((
||||||||

Ω
+

Ω +≤− kW

k

Lh ChR σσσ , 

)(

1

)( 2,12 ||||||)(||
Ω

+
Ω +⋅∇≤−⋅∇ kW

k

Lh ChR σσσ  

Also, the 2L -project operator Ph is defined 

from )(2 ΩL  onto hV  such that 

hhhh VvLvvvPv ∈Ω∈∀=− ),(,0),( 2 , 

2 1,2

1 1

( ) ( )
|| || || || , ( )k

k k

h L H
v Pv Ch v v H+

+ +

Ω Ω
− ≤ ∀ ∈ Ω  

Using the definitions of the operators hR  and 

hP , t he following theorem can be easily 

derived. 
Theorem 2. Assume that the solution of Eq. 
(2.2) has regular properties that  

))((, 12 Ω∈ +k
ttt HLpp ,

))((,,, 12 Ω∈ +k
tttttt HLσσττ  

Then, the following estimates are assumed 

22,122 ))((

1

))((
||||||)(||

Ω
+

Ω +≤− kWt
k

Lth ChR τττ , 

22,122 ))((

1

))((
||||||)(||

Ω
+

Ω +≤− kWtt
k

Ltth ChR τττ , 

22,122 ))((

1

))((
||||||)(||

Ω
+

Ω +≤− kWt
k

Lth ChR σσσ , 

)(

1

)( 2,12 ||||||)(||
Ω

+
Ω +≤− kWt

k

Lth pChpPp  

Let  

hhhh ppPpPppp −+−=− , 

hhhh RR ττττττ −+−=− , 

hhhh RR σσσσσσ −+−=−  

 
Subtracting (2.3) from (2.2) results in obtaining 

,,0)),((),)(( hhhhhth Wwwwpp ∈∀=−⋅∇+− σσ
,,0)),((),)(( hhhhhth Vvvv ∈∀=⋅∇−⋅∇+⋅∇− σσττ
.,0)),(()),(( hhhhhh VvvKv ∈∀=−−− ττσσ

Using the operators hR  and hP , the following 

is derived 

),,)((

)),((),)((

hth

hhhhthh

wpPp

wRwpPp

−=
−⋅∇+− σσ
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),),((),)((

)),((),)((

hhhthh

hhhhthh

vRvR

vRvR

⋅∇−⋅∇+⋅∇−=
⋅∇−⋅∇+⋅∇−

σσττ
σσττ

(( ), ) ( ( ), )

(( ), ). ( ( ), )
h h h h h h

h h h h

R v K R v

R v K R v

σ σ τ τ
σ σ τ τ

− − −
= − + −

 

 
Combination of Theorem 2, Cauchy-Schwarz’s 
inequality and Gronwall’s lemma causes to 
easily obtain the following theorem. 
Theorem 3.  Assume that the solution of Eq. 
(2.2) has regular properties that 

))((, 12 Ω∈ +k
ttt HLpp , 

))((,,, 12 Ω∈ +k
tttttt HLσσττ . 

Then, the following error estimates are 
presented 
 

1

))(( 2|||| +
Ω

≤− ∞
k

LLh Chpp , 

1

))(())(( 22 |||||||| +
ΩΩ

≤−+− ∞∞
k

LLhLLh Chσσττ , 

1

))(( 2|||| +
Ω

≤⋅∇−⋅∇ ∞
k

LLh Chσσ . 

  
4. Numerical example 
 

In the section, an example is provided to 
validate the theoretical results. The considered 
equation is 

],1,0(),(),,()),(( ×Ω∈=∇⋅∇− txtxfptxKpt  

],1,0(),(,0),( ×Ω∂∈= txtxp  

,,0)0,( Ω∈= xxp  

where  
2]1,0[=Ω , ),(),( txptxK = , ),( 21 xxx = . 

Let the exact solution of the above equations be 

txxxxtxp sin)1)(1(),( 2121 −−= . 

Then, the right term can be obtained  

1 2 1 2

2 2 2 2

1 1 2 2

2 2 2 2

2 2 1 1

( , ) ( )

           (1 )(1 ) cos

              (1 6 6 ) (1 ) sin

              (1 6 6 ) (1 ) sin

              

tf x t p p p

x x x x t

x x x x t

x x x x t

= − ∇ ⋅ ∇
= − −

− − − −
− − − −

 

In order to show efficiency of the new positive 
definite mixed finite element methods, the 
methods were compared with the standard 
mixed finite element methods.    
The numerical results are shown in Tables 1 
and 2. 
From the numerical results of Tables 1 and 2, it 
can be shown that the test results coincided 
with the theoretical analysis and the new 
positive definite mixed finite element methods 
spent less time than the standard mixed finite 
element methods. Then, it would be clear that 
the new positive definite mixed finite element 
methods are more efficient. 
 

Table 1.  )( 2LL∞ errors and CPU time of the 

standard mixed finite element methods. 

h   )( 2LL∞
errors CPU time (s) 

4

1  5.67245e-03 126.08 

8

1  2.81856e-03 655.61 

16

1  1.27335e-03 3868.13 

 

Table 2.  )( 2LL∞ errors and CPU time of the new 

positive definite mixed finite element methods. 

h   )( 2LL∞
errors CPU time (s) 

4

1  5.68956e-03 2.4246 

8

1  2.90786e-03 11.7073 

16

1  1.36892e-03 63.4119 

 
 
5. Conclusions 
 

In this paper, a positive definite semi-discrete 
mixed finite element method was analyzed for 
parabolic equations. In the new positive definite 
systems, the gradient equation and flux 
equations were separated from their scalar 
unknown equations. The existence and 
uniqueness were proven for the semi-discrete 
mixed finite element solutions. Next, error 
estimates were derived for the semi-discrete 
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schemes. Finally, a numerical example was 
provided to prove the efficiency of the new 
positive definite mixed finite element methods. 
In Fig. 1, a flow chart of this paper is presented 
in order to show the main process. 
 

 

Fig. 1. The method flow chart. 

 

 
Acknowledgments 
 

This work was supported by National Science 
Foundation of China (11126329), China 
Postdoctoral Science Foundation 
(2011M500968), and the Natural Science 
Foundation of Chongqing Municipal Education 
Commission (KJ121113).  

References 
 

[1]   T. Zhang and C. Li, “Superconvergence 
of finite element approximations to 
parabolic and hyperbolic integro-
differential equations”, Northeastern 
Math., Vol. 3, pp. 279‒288, (2001). 

[2]   A. K. Pani and T. E. Peterson, “Finite 

Element Methods with numerical 
quadrature for parabolic 
integrodifferential equations”, SIAM J. 
Numer. Anal., Vol. 33, pp. 1084‒1105, 
(1996). 

[3]   A. K. Pani and R. K. Sinha, “Error 
estimates for semidiscrete Galerkin 
approximation to a time dependent 
parabolic integro-differential equation 
with nonsmooth data”, Calcolo, Vol. 37, 
pp. 181‒205, (2000). 

[4]   H. Zhang and Z. Lu, “A V-cycle 
multigrid method for a viscoelastic fluid 
flow satisfying an oldroyd-B-type 
constitutive equation”, Numer. Anal. 
Appl., Vol. 12, pp. 69‒78, (2008). 

[5]   Rajen K. Sinha, Richard E. Ewing and 
Raytcho D. Lazarov, “Mixed finite 
element approximations of parabolic 
integro-differential equations with 
nonsmooth initial data”, SIAM J. Numer. 
Anal., Vol. 47, pp. 3269‒3292, (2009). 

[6]   H. Guo and H. Rui, “Least-squares 
Galerkin procedures for parabolic 
integro-differential equations”, Appl. 
Math. Comp., Vol. 150, pp. 749‒762, 
(2004). 

[7]   Y. Chen, P. Luan and Z. Lu, “Analysis of 
two-grid methods for nonlinear parabolic 
equations by expanded mixed finite 
element methods” , Adv. Appl. Math. 
Mech., Vol. 1, pp. 830‒844, (2009). 

[8]   Y. Chen, Y. Huang and D. Yu, “A two-
grid method for expanded mixed finite-
element solution of semilinear reaction-
diffusion equations”, Int. J. Numer. Meth. 
Engng., Vol. 57, pp. 193‒209, (2003). 

[9]   Y. Chen, H. Liu and S. Liu, “Analysis of 
two-grid methods for reaction-diffusion 
equations by expanded mixed finite 
element methods”, Int. J. Numer. Meth. 
Engng., Vol. 69, pp. 408‒422, (2007). 

[10] H. R. Li and Q. Li, “Finite volume 
element methods for nonlinear parabolic 
integro-differential problems”, J. KSIAM, 
Vol. 7, pp. 35‒49, (2003). 

[11] Z. X. Chen, “Expanded mixed element 
methods for linear second-order elliptic 
problems (I)”, RAIRO Model. Math. 
Anal. Numer., Vol. 32, pp. 479‒499, 



JCARME                                                          Zuliang Lu                                   Vol. 2, No. 1, Sept. 2012 

30 

(1998). 
[12] Z. X. Chen, “Expanded mixed element 

methods for quasilinear second-order 
elliptic problems (II)”, RAIRO Model. 
Math. Anal. Numer., Vol. 32, pp. 
501‒420, (1998). 

[13] Z. X. Chen, “Analysis of expanded 
mixed methods for fourth-order elliptic 
problems”, Numer. Methods Partial 
Differential Equations, Vol. 13, pp. 
483‒503, (1997). 

[14] D. P. Yang, “A splitting positive definite 
mixed element method for miscible 
displacement of compressible flow in 

porous media”, Numer. Methods Partial 
Differential Equations, Vol. 17, pp. 
229‒249, (2001). 

[15] Y. Liu, H. Li, J. F. Wang and S. He, 
“Splitting positive definite mixed 
element methods for pseudo-hyperbolic 
equations”, Numer. Methods Partial 
Differential Equations, Vol. 28, pp. 
670‒688, (2012). 

[16]  J. S. Zhang and D. P. Yang, “A splitting 
positive definite mixed element method 
for second-order hyperbolic equations”, 
Numer. Methods Partial Differential 
Equations, Vol. 25, pp. 622‒636, (2009). 

 


